These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
624 related articles for article (PubMed ID: 23850079)
1. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Karppinen K; Hirvelä E; Nevala T; Sipari N; Suokas M; Jaakola L Phytochemistry; 2013 Nov; 95():127-34. PubMed ID: 23850079 [TBL] [Abstract][Full Text] [Related]
2. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458 [TBL] [Abstract][Full Text] [Related]
3. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Jaakola L; Määttä K; Pirttilä AM; Törrönen R; Kärenlampi S; Hohtola A Plant Physiol; 2002 Oct; 130(2):729-39. PubMed ID: 12376640 [TBL] [Abstract][Full Text] [Related]
4. Abscisic Acid Regulates Anthocyanin Biosynthesis and Gene Expression Associated With Cell Wall Modification in Ripening Bilberry ( Karppinen K; Tegelberg P; Häggman H; Jaakola L Front Plant Sci; 2018; 9():1259. PubMed ID: 30210522 [TBL] [Abstract][Full Text] [Related]
5. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). Rodrigo MJ; Alquezar B; Zacarías L J Exp Bot; 2006; 57(3):633-43. PubMed ID: 16396998 [TBL] [Abstract][Full Text] [Related]
6. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. Samkumar A; Jones D; Karppinen K; Dare AP; Sipari N; Espley RV; Martinussen I; Jaakola L Plant Cell Environ; 2021 Oct; 44(10):3227-3245. PubMed ID: 34337774 [TBL] [Abstract][Full Text] [Related]
7. Bilberry metabolomic and proteomic profiling during fruit ripening reveals key dynamics affecting fruit quality. Nguyen N; Bergmann U; Jaakola L; Häggman H; Jokipii-Lukkari S; Toth K Physiol Plant; 2024; 176(5):e14534. PubMed ID: 39284733 [TBL] [Abstract][Full Text] [Related]
8. Activation of flavonoid biosynthesis by solar radiation in bilberry ( Vaccinium myrtillus L) leaves. Jaakola L; Määttä-Riihinen K; Kärenlampi S; Hohtola A Planta; 2004 Mar; 218(5):721-8. PubMed ID: 14666422 [TBL] [Abstract][Full Text] [Related]
9. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Zhang M; Leng P; Zhang G; Li X J Plant Physiol; 2009 Aug; 166(12):1241-1252. PubMed ID: 19307046 [TBL] [Abstract][Full Text] [Related]
10. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Wang P; Lu S; Zhang X; Hyden B; Qin L; Liu L; Bai Y; Han Y; Wen Z; Xu J; Cao H; Chen H Plant Sci; 2021 Mar; 304():110739. PubMed ID: 33568291 [TBL] [Abstract][Full Text] [Related]
11. Expression of the key genes involved in ABA biosynthesis in rice implanted by ion beam. Chen QF; Ya HY; Feng YR; Jiao Z Appl Biochem Biotechnol; 2014 May; 173(1):239-47. PubMed ID: 24634194 [TBL] [Abstract][Full Text] [Related]
12. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Wang Y; Wang Y; Ji K; Dai S; Hu Y; Sun L; Li Q; Chen P; Sun Y; Duan C; Wu Y; Luo H; Zhang D; Guo Y; Leng P Plant Physiol Biochem; 2013 Mar; 64():70-9. PubMed ID: 23376370 [TBL] [Abstract][Full Text] [Related]
13. Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development. Cocetta G; Karppinen K; Suokas M; Hohtola A; Häggman H; Spinardi A; Mignani I; Jaakola L J Plant Physiol; 2012 Jul; 169(11):1059-65. PubMed ID: 22608079 [TBL] [Abstract][Full Text] [Related]
14. Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor. Primetta AK; Karppinen K; Riihinen KR; Jaakola L Planta; 2015 Sep; 242(3):631-43. PubMed ID: 26168981 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in 'Bluecrop' highbush blueberry fruit during ripening. Chung SW; Yu DJ; Oh HD; Ahn JH; Huh JH; Lee HJ PLoS One; 2019; 14(7):e0220015. PubMed ID: 31318958 [TBL] [Abstract][Full Text] [Related]
16. Changes in the Proanthocyanidin Composition and Related Gene Expression in Bilberry ( Suvanto J; Karppinen K; Riihinen K; Jaakola L; Salminen JP J Agric Food Chem; 2020 Jul; 68(28):7378-7386. PubMed ID: 32543188 [TBL] [Abstract][Full Text] [Related]
17. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Concha CM; Figueroa NE; Poblete LA; Oñate FA; Schwab W; Figueroa CR Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361 [TBL] [Abstract][Full Text] [Related]
19. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. Li G; Zhao J; Qin B; Yin Y; An W; Mu Z; Cao Y BMC Plant Biol; 2019 Jul; 19(1):317. PubMed ID: 31307384 [TBL] [Abstract][Full Text] [Related]
20. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Jaakola L; Poole M; Jones MO; Kämäräinen-Karppinen T; Koskimäki JJ; Hohtola A; Häggman H; Fraser PD; Manning K; King GJ; Thomson H; Seymour GB Plant Physiol; 2010 Aug; 153(4):1619-29. PubMed ID: 20566708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]