These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23850182)

  • 1. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis.
    Chai G; Zhou N
    Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry.
    Heinz S; Balle F; Wagner G; Eifler D
    Ultrasonics; 2013 Dec; 53(8):1433-40. PubMed ID: 23545114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime.
    Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes.
    Bao X; Cheng L; Ding J; Chen X; Lu K; Cui W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).
    Krewerth D; Weidner A; Biermann H
    Ultrasonics; 2013 Dec; 53(8):1441-9. PubMed ID: 23541962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crack Initiation Mechanism and Life Prediction of Ti60 Titanium Alloy Considering Stress Ratios Effect in Very High Cycle Fatigue Regime.
    He R; Peng H; Liu F; Khan MK; Chen Y; He C; Wang C; Wang Q; Liu Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal Crack Initiation and Growth Starting from Artificially Generated Defects in Additively Manufactured Ti6Al4V Specimen in the VHCF Regime.
    Wickmann C; Benz C; Heyer H; Witte-Bodnar K; Schäfer J; Sander M
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Heat Treatment on Cyclic Response of Nickel-Based Superalloy Inconel 718 up to Very-High Cycle Regime.
    Zhao M; Zhao Z; Liu L; Luo G; Chen W
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.
    Mayer H; Fitzka M; Schuller R
    Ultrasonics; 2013 Dec; 53(8):1425-32. PubMed ID: 23548512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors.
    Deng H; Li W; Sakai T; Sun Z
    Materials (Basel); 2015 Dec; 8(12):8338-8354. PubMed ID: 28793714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data.
    Fitzka M; Schönbauer BM; Rhein RK; Sanaei N; Zekriardehani S; Tekalur SA; Carroll JW; Mayer H
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization on Crack Initiation and Early Propagation Region of Nickel-Based Alloys in Very High Cycle Fatigue.
    Chen Z; Dong Z; Liu C; Dai Y; He C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of ultrasonic fatigue testing technique--variable amplitude loadings and crack growth monitoring.
    Müller T; Sander M
    Ultrasonics; 2013 Dec; 53(8):1417-24. PubMed ID: 23597637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy.
    Pan X; Qian G; Wu S; Fu Y; Hong Y
    Sci Rep; 2020 Mar; 10(1):4742. PubMed ID: 32179764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Low Cycle Fatigue Predamage on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy.
    Nie B; Zhao Z; Ouyang Y; Chen D; Chen H; Sun H; Liu S
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy.
    Yang K; Zhong B; Huang Q; He C; Huang ZY; Wang Q; Liu YJ
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.