These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23850223)
1. Is expression of aquaporins (plasma membrane intrinsic protein 2s, PIP2s) associated with thermonasty (leaf-curling) in Rhododendron? Chen K; Wang X; Fessehaie A; Yin Y; Wang X; Arora R J Plant Physiol; 2013 Nov; 170(16):1447-54. PubMed ID: 23850223 [TBL] [Abstract][Full Text] [Related]
2. Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Peng Y; Arora R; Li G; Wang X; Fessehaie A Plant Cell Environ; 2008 Sep; 31(9):1275-89. PubMed ID: 18518915 [TBL] [Abstract][Full Text] [Related]
3. The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two Rhododendron species and their F Arora R; Krebs SL; Wisniewski ME Am J Bot; 2021 Oct; 108(10):1946-1956. PubMed ID: 34687044 [TBL] [Abstract][Full Text] [Related]
4. The relationship between freezing tolerance and thermotropic leaf movement in five Rhododendron species. Nilsen ET Oecologia; 1991 Jun; 87(1):63-71. PubMed ID: 28313353 [TBL] [Abstract][Full Text] [Related]
5. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195 [TBL] [Abstract][Full Text] [Related]
6. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. Die JV; Arora R; Rowland LJ PLoS One; 2017; 12(5):e0177389. PubMed ID: 28542212 [TBL] [Abstract][Full Text] [Related]
7. Infrared thermography of in situ natural freezing and mechanism of winter-thermonasty in Rhododendron maximum. Arora R; Wisniewski M; Tuong T; Livingston D Physiol Plant; 2023 Mar; 175(2):e13876. PubMed ID: 36808742 [TBL] [Abstract][Full Text] [Related]
8. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Wei H; Dhanaraj AL; Arora R; Rowland LJ; Fu Y; Sun L Plant Cell Environ; 2006 Apr; 29(4):558-70. PubMed ID: 17080607 [TBL] [Abstract][Full Text] [Related]
9. Influence of water relations and temperature on leaf movements of rhododendron species. Nilsen ET Plant Physiol; 1987 Mar; 83(3):607-12. PubMed ID: 16665296 [TBL] [Abstract][Full Text] [Related]
10. Effects of summer drought and winter freezing on stem hydraulic conductivity of Rhododendron species from contrasting climates. Cordero RA; Nilsen ET Tree Physiol; 2002 Sep; 22(13):919-28. PubMed ID: 12204848 [TBL] [Abstract][Full Text] [Related]
11. Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Peng Y; Lin W; Wei H; Krebs SL; Arora R Physiol Plant; 2008 Jan; 132(1):44-52. PubMed ID: 18251869 [TBL] [Abstract][Full Text] [Related]
12. Role of aquaporins in leaf physiology. Heinen RB; Ye Q; Chaumont F J Exp Bot; 2009; 60(11):2971-85. PubMed ID: 19542196 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Wei H; Dhanaraj AL; Rowland LJ; Fu Y; Krebs SL; Arora R Planta; 2005 Jun; 221(3):406-16. PubMed ID: 15933892 [TBL] [Abstract][Full Text] [Related]
14. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. Kelly G; Sade N; Doron-Faigenboim A; Lerner S; Shatil-Cohen A; Yeselson Y; Egbaria A; Kottapalli J; Schaffer AA; Moshelion M; Granot D Plant J; 2017 Jul; 91(2):325-339. PubMed ID: 28390076 [TBL] [Abstract][Full Text] [Related]
15. Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. Baaziz KB; Lopez D; Rabot A; Combes D; Gousset A; Bouzid S; Cochard H; Sakr S; Venisse JS Tree Physiol; 2012 Apr; 32(4):423-34. PubMed ID: 22544048 [TBL] [Abstract][Full Text] [Related]
16. Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress. Zupin M; Sedlar A; Kidrič M; Meglič V J Plant Res; 2017 Jul; 130(4):735-745. PubMed ID: 28303406 [TBL] [Abstract][Full Text] [Related]
18. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Lian HL; Yu X; Lane D; Sun WN; Tang ZC; Su WA Cell Res; 2006 Jul; 16(7):651-60. PubMed ID: 16773042 [TBL] [Abstract][Full Text] [Related]
19. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Qian ZJ; Song JJ; Chaumont F; Ye Q Plant Cell Environ; 2015 Mar; 38(3):461-73. PubMed ID: 24601940 [TBL] [Abstract][Full Text] [Related]
20. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content. Šurbanovski N; Sargent DJ; Else MA; Simpson DW; Zhang H; Grant OM PLoS One; 2013; 8(9):e74945. PubMed ID: 24086403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]