These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23850583)
1. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with (85)Kr measurements made in the vicinity of nuclear reprocessing plant. Connan O; Smith K; Organo C; Solier L; Maro D; Hébert D J Environ Radioact; 2013 Oct; 124():266-77. PubMed ID: 23850583 [TBL] [Abstract][Full Text] [Related]
2. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4). Leroy C; Maro D; Hébert D; Solier L; Rozet M; Le Cavelier S; Connan O J Environ Radioact; 2010 Nov; 101(11):937-44. PubMed ID: 20638159 [TBL] [Abstract][Full Text] [Related]
3. Near-field krypton-85 measurements in stable meteorological conditions around the AREVA NC La Hague reprocessing plant: estimation of atmospheric transfer coefficients. Connan O; Solier L; Hébert D; Maro D; Lamotte M; Voiseux C; Laguionie P; Cazimajou O; Le Cavelier S; Godinot C; Morillon M; Thomas L; Percot S J Environ Radioact; 2014 Nov; 137():142-149. PubMed ID: 25078471 [TBL] [Abstract][Full Text] [Related]
4. Simulating the mesoscale transport of krypton-85. Felsberg A; Ross JO; Schlosser C; Kirchner G J Environ Radioact; 2018 Jan; 181():85-93. PubMed ID: 29128689 [TBL] [Abstract][Full Text] [Related]
5. In situ metrology of 85Kr plumes released by the COGEMA La Hague nuclear reprocessing plant. Gurriaran R; Maro D; Bouisset P; Hebert D; Leclerc G; Mekhlouche D; Rozet M; Solier L J Environ Radioact; 2004; 72(1-2):137-44. PubMed ID: 15162865 [TBL] [Abstract][Full Text] [Related]
6. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model. Abe K; Iyogi T; Kawabata H; Chiang JH; Suwa H; Hisamatsu S Radiat Prot Dosimetry; 2015 Nov; 167(1-3):331-5. PubMed ID: 25948824 [TBL] [Abstract][Full Text] [Related]
7. Atmospheric tritium concentrations under influence of AREVA NC La Hague reprocessing plant (France) and background levels. Connan O; Hébert D; Solier L; Maro D; Pellerin G; Voiseux C; Lamotte M; Laguionie P J Environ Radioact; 2017 Oct; 177():184-193. PubMed ID: 28689161 [TBL] [Abstract][Full Text] [Related]
8. Half a century of Krypton-85 activity concentration measured in air over Central Europe: Trends and relevance for dating young groundwater. Bollhöfer A; Schlosser C; Schmid S; Konrad M; Purtschert R; Krais R J Environ Radioact; 2019 Sep; 205-206():7-16. PubMed ID: 31082675 [TBL] [Abstract][Full Text] [Related]
9. Variability of atmospheric krypton-85 activity concentrations observed close to the ITCZ in the southern hemisphere. Bollhöfer A; Schlosser C; Ross JO; Sartorius H; Schmid S J Environ Radioact; 2014 Jan; 127():111-8. PubMed ID: 24184817 [TBL] [Abstract][Full Text] [Related]
10. An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination. Momoshima N; Inoue F; Sugihara S; Shimada J; Taniguchi M J Environ Radioact; 2010 Aug; 101(8):615-21. PubMed ID: 20430490 [TBL] [Abstract][Full Text] [Related]
11. Update and improvement of the global krypton-85 emission inventory. Ahlswede J; Hebel S; Ross JO; Schoetter R; Kalinowski MB J Environ Radioact; 2013 Jan; 115():34-42. PubMed ID: 22858641 [TBL] [Abstract][Full Text] [Related]
12. Evaluating 5 decades of atmospheric Kersting A; Schlosser C; Bollhöfer A; Suckow A J Environ Radioact; 2020 Dec; 225():106451. PubMed ID: 33120030 [TBL] [Abstract][Full Text] [Related]
13. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model. Kim CH; Song CK; Lee SH; Song SK J Environ Radioact; 2008 Oct; 99(10):1644-52. PubMed ID: 18590941 [TBL] [Abstract][Full Text] [Related]
14. Monitoring atmospheric Gao C; Liu SY; Feng JD; Hu SM; Jiang W; Lu ZT; Ritterbusch F; Wang WH; Yang GM; Zhao LU J Environ Radioact; 2021 Jul; 233():106604. PubMed ID: 33813356 [TBL] [Abstract][Full Text] [Related]
15. The measurement of low concentrations of Kr-85 in atmospheric air samples. Wilhelmová L; Tomásek M; Stukheil K Biol Trace Elem Res; 1994; 43-45():725-30. PubMed ID: 7710893 [TBL] [Abstract][Full Text] [Related]
16. A new compilation of the atmospheric 85krypton inventories from 1945 to 2000 and its evaluation in a global transport model. Winger K; Feichter J; Kalinowski MB; Sartorius H; Schlosser C J Environ Radioact; 2005; 80(2):183-215. PubMed ID: 15701383 [TBL] [Abstract][Full Text] [Related]
17. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models. Liu Y; Li H; Sun S; Fang S J Environ Radioact; 2017 Sep; 175-176():94-104. PubMed ID: 28495593 [TBL] [Abstract][Full Text] [Related]
18. Measurement of krypton-85 in air at Clonskeagh, Dublin 1993-1997. Howett D; O'Colmáin M J Radiol Prot; 1998 Mar; 18(1):15-21. PubMed ID: 9594112 [TBL] [Abstract][Full Text] [Related]
19. The VATO project: An original methodology to study the transfer of tritium as HT and HTO in grassland ecosystem. Maro D; Vermorel F; Rozet M; Aulagnier C; Hébert D; Le Dizès S; Voiseux C; Solier L; Cossonnet C; Godinot C; Fiévet B; Laguionie P; Connan O; Cazimajou O; Morillon M; Lamotte M J Environ Radioact; 2017 Feb; 167():235-248. PubMed ID: 27908461 [TBL] [Abstract][Full Text] [Related]
20. Conclusions on plutonium separation from atmospheric krypton-85 measured at various distances from the Karlsruhe reprocessing plant. Kalinowski MB; Sartorius H; Uhl S; Weiss W J Environ Radioact; 2004; 73(2):203-22. PubMed ID: 15023448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]