These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23850946)

  • 21. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use.
    Bender AT; Beavo JA
    Pharmacol Rev; 2006 Sep; 58(3):488-520. PubMed ID: 16968949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of phosphodiesterases in neurological and psychiatric disease.
    Hebb AL; Robertson HA
    Curr Opin Pharmacol; 2007 Feb; 7(1):86-92. PubMed ID: 17113826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic-nucleotide signalling in protozoa.
    Gould MK; de Koning HP
    FEMS Microbiol Rev; 2011 May; 35(3):515-41. PubMed ID: 21223322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling.
    de Oliveira SK; Smolenski A
    Biochem Pharmacol; 2009 Feb; 77(4):723-33. PubMed ID: 18805402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic nucleotide phosphodiesterases (PDEs): diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents.
    Manganiello VC; Degerman E
    Thromb Haemost; 1999 Aug; 82(2):407-11. PubMed ID: 10605731
    [No Abstract]   [Full Text] [Related]  

  • 26. Cyclic nucleotide specific phosphodiesterases of Leishmania major.
    Johner A; Kunz S; Linder M; Shakur Y; Seebeck T
    BMC Microbiol; 2006 Mar; 6():25. PubMed ID: 16522215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Therapeutic potential of PDE modulation in treating heart disease.
    Knight W; Yan C
    Future Med Chem; 2013 Sep; 5(14):1607-20. PubMed ID: 24047267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanism of cyclic nucleotide hydrolysis in the phosphodiesterase catalytic site.
    Salter EA; Wierzbicki A
    J Phys Chem B; 2007 May; 111(17):4547-52. PubMed ID: 17425352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An update on cyclic nucleotide phosphodiesterase (PDE) inhibitors: phosphodiesterases and drug selectivity.
    Gupta R; Kumar G; Kumar RS
    Methods Find Exp Clin Pharmacol; 2005 Mar; 27(2):101-18. PubMed ID: 15834463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging biology of PDE10A.
    Wilson LS; Brandon NJ
    Curr Pharm Des; 2015; 21(3):378-88. PubMed ID: 25159072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Regulation of the phosphodiesterase activity of cyclic nucleotides (new endogenous regulators)].
    Galoian AA; Gurvits BIa
    Vestn Akad Med Nauk SSSR; 1982; (9):64-9. PubMed ID: 6293217
    [No Abstract]   [Full Text] [Related]  

  • 32. Antagonists of cyclic nucleotide phosphodiesterase (PDE) isozymes PDE 3 and PDE 4 suppress lymphoblastic response to HLA class II alloantigens: a potential novel approach to preventing allograft rejection?
    Dousa MK; Moore SB; Ploeger NA; DeGoey SR; Dousa TP
    Clin Nephrol; 1997 Mar; 47(3):187-9. PubMed ID: 9105766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of Non-canonical Cyclic Nucleotides: Hydrolysis and Transport.
    Schneider EH; Seifert R
    Handb Exp Pharmacol; 2017; 238():169-205. PubMed ID: 28204955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic nucleotide-mediated regulation of vascular smooth muscle cell cyclic nucleotide phosphodiesterase activity. Selective effect of cyclic AMP.
    Maurice DH
    Cell Biochem Biophys; 1998; 29(1-2):35-47. PubMed ID: 9631237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis.
    Netherton SJ; Maurice DH
    Mol Pharmacol; 2005 Jan; 67(1):263-72. PubMed ID: 15475573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors.
    Castro A; Jerez MJ; Gil C; Martinez A
    Med Res Rev; 2005 Mar; 25(2):229-44. PubMed ID: 15514991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides.
    Lomas O; Zaccolo M
    Physiology (Bethesda); 2014 Mar; 29(2):141-9. PubMed ID: 24583770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling.
    Mehats C; Andersen CB; Filopanti M; Jin SL; Conti M
    Trends Endocrinol Metab; 2002; 13(1):29-35. PubMed ID: 11750860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents.
    Lugnier C
    Pharmacol Ther; 2006 Mar; 109(3):366-98. PubMed ID: 16102838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphodiesterases (PDEs) and PDE inhibitors for treatment of LUTS.
    Andersson KE; Uckert S; Stief C; Hedlund P
    Neurourol Urodyn; 2007 Oct; 26(6 Suppl):928-33. PubMed ID: 17806124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.