These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2385106)

  • 1. The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase.
    Dillon PF; Clark JF
    J Theor Biol; 1990 Mar; 143(2):275-84. PubMed ID: 2385106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems.
    Saks VA; Ventura-Clapier R; Huchua ZA; Preobrazhensky AN; Emelin IV
    Biochim Biophys Acta; 1984 Apr; 803(4):254-64. PubMed ID: 6231056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain.
    Shoubridge EA; Briggs RW; Radda GK
    FEBS Lett; 1982 Apr; 140(2):289-92. PubMed ID: 6282642
    [No Abstract]   [Full Text] [Related]  

  • 4. Creatine kinase function in mitochondria isolated from gravid and non-gravid guinea-pig uteri.
    Clark JF; Kuznetsov AV; Khuchua Z; Veksler V; Ventura-Clapier R; Saks V
    FEBS Lett; 1994 Jun; 347(2-3):147-51. PubMed ID: 8033993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase.
    Krause SM; Jacobus WE
    J Biol Chem; 1992 Feb; 267(4):2480-6. PubMed ID: 1531142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEI-cellulose thin-layer chromatography. Product studies of the creatine kinase and pyruvate kinase reactions.
    Rowley GL; Kenyon GL
    Anal Biochem; 1974 Apr; 58(2):525-33. PubMed ID: 4827394
    [No Abstract]   [Full Text] [Related]  

  • 8. Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells.
    Gordon PV; Keller TC
    Cell Motil Cytoskeleton; 1992; 21(1):38-44. PubMed ID: 1531784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-localization and functional coupling of creatine kinase B and gastric H+/K(+)-ATPase on the apical membrane and the tubulovesicular system of parietal cells.
    Sistermans EA; Klaassen CH; Peters W; Swarts HG; Jap PH; De Pont JJ; Wieringa B
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):445-51. PubMed ID: 7487880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. 31P NMR studies using creatine analogs.
    Wiseman RW; Kushmerick MJ
    J Biol Chem; 1995 May; 270(21):12428-38. PubMed ID: 7759484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced activity of enzymes coupling ATP-generating with ATP-consuming processes in the failing myocardium.
    Dzeja PP; Pucar D; Redfield MM; Burnett JC; Terzic A
    Mol Cell Biochem; 1999 Nov; 201(1-2):33-40. PubMed ID: 10630620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and mechanism of action of muscle pyruvate kinase.
    Dann LG; Britton HG
    Biochem J; 1978 Jan; 169(1):39-54. PubMed ID: 629752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of sea-urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux.
    Dorsten FA; Wyss M; Wallimann T; Nicolay K
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):411-6. PubMed ID: 9230121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A steady-state kinetic analysis of the fructose 1,6-bisphosphate-activated pyruvate kinase from Carcinus maenas hepatopancreas.
    Giles IG; Poat PC
    Biochem J; 1980 Feb; 185(2):289-99. PubMed ID: 7396817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epnzymatric recycling of coenzymes by a multi-enzyme system immobilized within semipermeable collodion microcapsules.
    C-AMPBELL J; Chang TM
    Biochim Biophys Acta; 1975 Jul; 397(1):101-9. PubMed ID: 1148255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and mechanism of action of creatine kinase from ox smooth muscle. Anion effects compared with pyruvate kinase.
    Focant B; Watts DC
    Biochem J; 1973 Oct; 135(2):265-76. PubMed ID: 4797165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.