These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2385106)

  • 21. Pyruvate kinase: is the mechanism of phospho transfer associative or dissociative?
    Hassett A; Blättler W; Knowles JR
    Biochemistry; 1982 Dec; 21(25):6335-40. PubMed ID: 7150563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH studies on the chemical mechanism of rabbit muscle pyruvate kinase. 2. Physiological substrates and phosphoenol-alpha-ketobutyrate.
    Dougherty TM; Cleland WW
    Biochemistry; 1985 Oct; 24(21):5875-80. PubMed ID: 3878724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy.
    Raimbault C; Clottes E; Leydier C; Vial C; Buchet R
    Eur J Biochem; 1997 Aug; 247(3):1197-208. PubMed ID: 9288948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization.
    Gellerich F; Saks VA
    Biochem Biophys Res Commun; 1982 Apr; 105(4):1473-81. PubMed ID: 7103968
    [No Abstract]   [Full Text] [Related]  

  • 25. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out.
    Abraham MR; Selivanov VA; Hodgson DM; Pucar D; Zingman LV; Wieringa B; Dzeja PP; Alekseev AE; Terzic A
    J Biol Chem; 2002 Jul; 277(27):24427-34. PubMed ID: 11967264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Affinity modification of creatine kinase from rabbit skeletal muscle by 2',3'-dialdehyde derivatives of ADP and ATP].
    Nevinskiĭ GA; Gazariants MG; Mkrtchian ZS
    Bioorg Khim; 1983 Apr; 9(4):487-95. PubMed ID: 6679775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyruvate kinase: current status of regulatory and functional properties.
    Muñoz ME; Ponce E
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jun; 135(2):197-218. PubMed ID: 12798932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphocretine production coupled to the glycolytic reactions in the cytosol of cardiac cells.
    Kupriyanov VV; Seppet EK; Emelin IV; Saks VA
    Biochim Biophys Acta; 1980 Sep; 592(2):197-210. PubMed ID: 7407089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intestinal injury caused by Eimeria spp. impairs the phosphotransfer network and gain weight in experimentally infected chicken chicks.
    Galli GM; Baldissera MD; Griss LG; Souza CF; Fortuoso BF; Boiago MM; Gris A; Mendes RE; Stefani LM; da Silva AS
    Parasitol Res; 2019 May; 118(5):1573-1579. PubMed ID: 30815727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The alpha beta-methylene analogues of ADP and ATP act as substrates for creatine kinase. delta G0 for this reaction and for the hydrolysis of the alpha beta-methylene analogue of ATP.
    Milner-White EJ; Rycroft DS
    Eur J Biochem; 1983 Jun; 133(1):169-72. PubMed ID: 6852021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II).
    Jarori GK; Ray BD; Nageswara Rao BD
    Biochemistry; 1985 Jul; 24(14):3487-94. PubMed ID: 4041424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S; Carr LJ; Kreutzer U; Jue T
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 31P saturation transfer and phosphocreatine imaging in the monkey brain.
    Mora B; Narasimhan PT; Ross BD; Allman J; Barker PB
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8372-6. PubMed ID: 1924297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional changes associated with the sequential transformation of L'4 into L4 pyruvate kinase.
    Sprengers ED; Staal GE
    Biochim Biophys Acta; 1979 Oct; 570(2):259-70. PubMed ID: 497228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase.
    Korge P; Byrd SK; Campbell KB
    Eur J Biochem; 1993 May; 213(3):973-80. PubMed ID: 8504836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hypothetical model of the influence of inorganic phosphate on the kinetics of pyruvate kinase.
    Kuczek M
    Biosystems; 1999 Dec; 54(1-2):71-6. PubMed ID: 10658839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The kinetics of rabbit muscle pyruvate kinase. Initial-velocity, substrate- and product-inhibition and isotopic-exchange studies of the reverse reaction.
    Giles IG; Poat PC; Munday KA
    Biochem J; 1976 Sep; 157(3):577-89. PubMed ID: 985404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential coupling of smooth and skeletal muscle pyruvate kinase to creatine kinase.
    Sears PR; Dillon PF
    Biochemistry; 1999 Nov; 38(45):14881-6. PubMed ID: 10555970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.