BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23851145)

  • 1. Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases.
    Brown HS; Licata VJ
    Biochim Biophys Acta; 2013 Oct; 1834(10):2133-8. PubMed ID: 23851145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative thermal denaturation of Thermus aquaticus and Escherichia coli type 1 DNA polymerases.
    Karantzeni I; Ruiz C; Liu CC; Licata VJ
    Biochem J; 2003 Sep; 374(Pt 3):785-92. PubMed ID: 12786603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stability of Taq DNA polymerase results from a reduced entropic folding penalty; identification of other thermophilic proteins with similar folding thermodynamics.
    Liu CC; LiCata VJ
    Proteins; 2014 May; 82(5):785-93. PubMed ID: 24174290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme free energy of stabilization of Taq DNA polymerase.
    Schoeffler AJ; Joubert AM; Peng F; Khan F; Liu CC; LiCata VJ
    Proteins; 2004 Mar; 54(4):616-21. PubMed ID: 14997557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA.
    Datta K; LiCata VJ
    Nucleic Acids Res; 2003 Oct; 31(19):5590-7. PubMed ID: 14500822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Yang Y; LiCata VJ
    Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glutamate effect on DNA binding by pol I DNA polymerases: osmotic stress and the effective reversal of salt linkage.
    Deredge DJ; Baker JT; Datta K; Licata VJ
    J Mol Biol; 2010 Aug; 401(2):223-38. PubMed ID: 20558176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.
    Elias AA; Cisneros GA
    Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pol I DNA polymerases stimulate DNA end-joining by Escherichia coli DNA ligase.
    Yang Y; LiCata VJ
    Biochem Biophys Res Commun; 2018 Feb; 497(1):13-18. PubMed ID: 29409896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global conformations, hydrodynamics, and X-ray scattering properties of Taq and Escherichia coli DNA polymerases in solution.
    Joubert AM; Byrd AS; LiCata VJ
    J Biol Chem; 2003 Jul; 278(28):25341-7. PubMed ID: 12730189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of DNA polymerase I from an extreme thermophile, Thermus scotoductus strain K1.
    Saghatelyan A; Panosyan H; Trchounian A; Birkeland NK
    Microbiologyopen; 2021 Jan; 10(1):e1149. PubMed ID: 33415847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.
    Xu C; Maxwell BA; Suo Z
    J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA.
    Datta K; Wowor AJ; Richard AJ; LiCata VJ
    Biophys J; 2006 Mar; 90(5):1739-51. PubMed ID: 16339886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity.
    Lawyer FC; Stoffel S; Saiki RK; Chang SY; Landre PA; Abramson RD; Gelfand DH
    PCR Methods Appl; 1993 May; 2(4):275-87. PubMed ID: 8324500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the thermostability and function of truncated Thermus aquaticus DNA polymerase fragments.
    Villbrandt B; Sagner G; Schomburg D
    Protein Eng; 1997 Nov; 10(11):1281-8. PubMed ID: 9514116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step purification of Taq DNA polymerase using nucleotide-mimetic affinity chromatography.
    Melissis S; Labrou NE; Clonis YD
    Biotechnol J; 2007 Jan; 2(1):121-32. PubMed ID: 17183508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.