BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23851145)

  • 21. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I.
    Di Pasquale F; Fischer D; Grohmann D; Restle T; Geyer A; Marx A
    J Am Chem Soc; 2008 Aug; 130(32):10748-57. PubMed ID: 18627154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity.
    Obeid S; Schnur A; Gloeckner C; Blatter N; Welte W; Diederichs K; Marx A
    Chembiochem; 2011 Jul; 12(10):1574-80. PubMed ID: 21480455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and catalytic insights into HoLaMa, a derivative of Klenow DNA polymerase lacking the proofreading domain.
    Kovermann M; Stefan A; Castaldo A; Caramia S; Hochkoeppler A
    PLoS One; 2019; 14(4):e0215411. PubMed ID: 30970012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR.
    Kermekchiev MB; Tzekov A; Barnes WM
    Nucleic Acids Res; 2003 Nov; 31(21):6139-47. PubMed ID: 14576300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase.
    Yang S; Li X; Ding D; Hou J; Jin Z; Yu X; Bo T; Li W; Li M
    Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):223-6. PubMed ID: 15966861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates.
    Rosenblum SL; Weiden AG; Lewis EL; Ogonowsky AL; Chia HE; Barrett SE; Liu MD; Leconte AM
    Chembiochem; 2017 Apr; 18(8):816-823. PubMed ID: 28160372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.
    Li Y; Kong Y; Korolev S; Waksman G
    Protein Sci; 1998 May; 7(5):1116-23. PubMed ID: 9605316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermochemistry of protein-DNA interaction studied with temperature-controlled nonequilibrium capillary electrophoresis of equilibrium mixtures.
    Berezovski M; Krylov SN
    Anal Chem; 2005 Mar; 77(5):1526-9. PubMed ID: 15732940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Snapshots of a modified nucleotide moving through the confines of a DNA polymerase.
    Kropp HM; Dürr SL; Peter C; Diederichs K; Marx A
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9992-9997. PubMed ID: 30224478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular diversity and catalytic activity of Thermus DNA polymerases.
    Gibbs MD; Reeves RA; Mandelman D; Mi Q; Lee J; Bergquist PL
    Extremophiles; 2009 Sep; 13(5):817-26. PubMed ID: 19597696
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2020 May; 2020(5):100743. PubMed ID: 32358055
    [No Abstract]   [Full Text] [Related]  

  • 36. A novel approach for high-level expression and purification of GST-fused highly thermostable Taq DNA polymerase in Escherichia coli.
    Din RU; Khan MI; Jan A; Khan SA; Ali I
    Arch Microbiol; 2020 Aug; 202(6):1449-1458. PubMed ID: 32189018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of DNA polymerase I from Thermus phage G20c.
    Ahlqvist J; Linares-Pastén JA; Jasilionis A; Welin M; Håkansson M; Svensson LA; Wang L; Watzlawick H; Ævarsson A; Friðjónsson ÓH; Hreggviðsson GÓ; Ketelsen Striberny B; Glomsaker E; Lanes O; Al-Karadaghi S; Nordberg Karlsson E
    Acta Crystallogr D Struct Biol; 2022 Nov; 78(Pt 11):1384-1398. PubMed ID: 36322421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. O-helix mutant T664P of Thermus aquaticus DNA polymerase I: altered catalytic properties for incorporation of incorrect nucleotides but not correct nucleotides.
    Tosaka A; Ogawa M; Yoshida S; Suzuki M
    J Biol Chem; 2001 Jul; 276(29):27562-7. PubMed ID: 11346641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity.
    Werneburg BG; Ahn J; Zhong X; Hondal RJ; Kraynov VS; Tsai MD
    Biochemistry; 1996 Jun; 35(22):7041-50. PubMed ID: 8679529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation.
    Li Y; Korolev S; Waksman G
    EMBO J; 1998 Dec; 17(24):7514-25. PubMed ID: 9857206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.