BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 23851171)

  • 1. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH; Liao HT; Chen JP
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration.
    Kao HH; Kuo CY; Chen KS; Chen JP
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering.
    Chen CH; Kuo CY; Wang YJ; Chen JP
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds.
    Oelschlaeger C; Bossler F; Willenbacher N
    Biomacromolecules; 2016 Feb; 17(2):580-9. PubMed ID: 26785355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering.
    Liao HT; Shalumon KT; Chang KH; Sheu C; Chen JP
    J Mater Chem B; 2016 Mar; 4(10):1827-1841. PubMed ID: 32263060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A; Bhat S; Nayak V; Kumar A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering.
    Kuo CY; Chen CH; Hsiao CY; Chen JP
    Carbohydr Polym; 2015 Mar; 117():722-730. PubMed ID: 25498693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.
    Tripathi A; Kathuria N; Kumar A
    J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds.
    Chen CH; Kuo CY; Chen JP
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29373507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N; Bölgen N
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin.
    Berillo D; Elowsson L; Kirsebom H
    Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue.
    Kumari J; Karande AA; Kumar A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):264-77. PubMed ID: 26654271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering.
    Luo LJ; Lai JY; Chou SF; Hsueh YJ; Ma DH
    Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications.
    Korurer E; Kenar H; Doger E; Karaoz E
    J Biomed Mater Res A; 2014 Jul; 102(7):2220-9. PubMed ID: 23913820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-catalyzed crosslinking in a partly frozen state: a new way to produce supermacroporous protein structures.
    Kirsebom H; Elowsson L; Berillo D; Cozzi S; Inci I; Piskin E; Galaev IY; Mattiasson B
    Macromol Biosci; 2013 Jan; 13(1):67-76. PubMed ID: 23239633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipose tissue engineering by human adipose-derived stromal cells.
    Hong L; Peptan IA; Colpan A; Daw JL
    Cells Tissues Organs; 2006; 183(3):133-40. PubMed ID: 17108684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform.
    Henderson TM; Ladewig K; Haylock DN; McLean KM; O'Connor AJ
    J Biomater Sci Polym Ed; 2015; 26(13):881-97. PubMed ID: 26123677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays.
    Olov N; Mirzadeh H; Moradi R; Rajabi S; Bagheri-Khoulenjani S
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2438-2451. PubMed ID: 35661396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.