These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
666 related articles for article (PubMed ID: 23851171)
1. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies. Chang KH; Liao HT; Chen JP Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171 [TBL] [Abstract][Full Text] [Related]
2. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Kao HH; Kuo CY; Chen KS; Chen JP Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444 [TBL] [Abstract][Full Text] [Related]
3. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Chen CH; Kuo CY; Wang YJ; Chen JP Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886065 [TBL] [Abstract][Full Text] [Related]
4. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Singh D; Zo SM; Kumar A; Han SS J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds. Oelschlaeger C; Bossler F; Willenbacher N Biomacromolecules; 2016 Feb; 17(2):580-9. PubMed ID: 26785355 [TBL] [Abstract][Full Text] [Related]
6. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering. Liao HT; Shalumon KT; Chang KH; Sheu C; Chen JP J Mater Chem B; 2016 Mar; 4(10):1827-1841. PubMed ID: 32263060 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Kuo CY; Chen CH; Hsiao CY; Chen JP Carbohydr Polym; 2015 Mar; 117():722-730. PubMed ID: 25498693 [TBL] [Abstract][Full Text] [Related]
9. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Tripathi A; Kathuria N; Kumar A J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830 [TBL] [Abstract][Full Text] [Related]
10. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
11. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Chen CH; Kuo CY; Chen JP Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29373507 [TBL] [Abstract][Full Text] [Related]
12. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. Kemençe N; Bölgen N J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022 [TBL] [Abstract][Full Text] [Related]
13. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin. Berillo D; Elowsson L; Kirsebom H Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878 [TBL] [Abstract][Full Text] [Related]
14. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. Kumari J; Karande AA; Kumar A ACS Appl Mater Interfaces; 2016 Jan; 8(1):264-77. PubMed ID: 26654271 [TBL] [Abstract][Full Text] [Related]
15. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Luo LJ; Lai JY; Chou SF; Hsueh YJ; Ma DH Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534 [TBL] [Abstract][Full Text] [Related]
16. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications. Korurer E; Kenar H; Doger E; Karaoz E J Biomed Mater Res A; 2014 Jul; 102(7):2220-9. PubMed ID: 23913820 [TBL] [Abstract][Full Text] [Related]
17. Enzyme-catalyzed crosslinking in a partly frozen state: a new way to produce supermacroporous protein structures. Kirsebom H; Elowsson L; Berillo D; Cozzi S; Inci I; Piskin E; Galaev IY; Mattiasson B Macromol Biosci; 2013 Jan; 13(1):67-76. PubMed ID: 23239633 [TBL] [Abstract][Full Text] [Related]
18. Adipose tissue engineering by human adipose-derived stromal cells. Hong L; Peptan IA; Colpan A; Daw JL Cells Tissues Organs; 2006; 183(3):133-40. PubMed ID: 17108684 [TBL] [Abstract][Full Text] [Related]
19. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform. Henderson TM; Ladewig K; Haylock DN; McLean KM; O'Connor AJ J Biomater Sci Polym Ed; 2015; 26(13):881-97. PubMed ID: 26123677 [TBL] [Abstract][Full Text] [Related]
20. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays. Olov N; Mirzadeh H; Moradi R; Rajabi S; Bagheri-Khoulenjani S J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2438-2451. PubMed ID: 35661396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]