BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23851282)

  • 1. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions.
    Kellner C; Derer S; Valerius T; Peipp M
    Methods; 2014 Jan; 65(1):105-13. PubMed ID: 23851282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fc engineering: design, expression, and functional characterization of antibody variants with improved effector function.
    Derer S; Kellner C; Berger S; Valerius T; Peipp M
    Methods Mol Biol; 2012; 907():519-36. PubMed ID: 22907372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.
    Kellner C; Otte A; Cappuzzello E; Klausz K; Peipp M
    Transfus Med Hemother; 2017 Sep; 44(5):327-336. PubMed ID: 29070978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.
    Kinder M; Greenplate AR; Strohl WR; Jordan RE; Brezski RJ
    MAbs; 2015; 7(3):494-504. PubMed ID: 25933349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fc engineering of antibodies and antibody derivatives by primary sequence alteration and their functional characterization.
    Derer S; Kellner C; Rösner T; Klausz K; Glorius P; Valerius T; Peipp M
    Methods Mol Biol; 2014; 1131():525-40. PubMed ID: 24515488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fc Glyco- and Fc Protein-Engineering: Design of Antibody Variants with Improved ADCC and CDC Activity.
    Kellner C; Derer S; Klausz K; Rosskopf S; Wirt T; Rösner T; Otte A; Cappuzzello E; Peipp M
    Methods Mol Biol; 2018; 1827():381-397. PubMed ID: 30196508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Fc optimization to increase the cytotoxic activity of a CD19-targeting antibody.
    Gehlert CL; Rahmati P; Boje AS; Winterberg D; Krohn S; Theocharis T; Cappuzzello E; Lux A; Nimmerjahn F; Ludwig RJ; Lustig M; Rösner T; Valerius T; Schewe DM; Kellner C; Klausz K; Peipp M
    Front Immunol; 2022; 13():957874. PubMed ID: 36119088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of amino acid substitutions on the biological activity of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori).
    Aoyama M; Tada M; Tatematsu KI; Hashii N; Sezutsu H; Ishii-Watabe A
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2633-2638. PubMed ID: 30119885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC.
    Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M
    J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
    Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR
    Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II.
    Ferrara C; Brünker P; Suter T; Moser S; Püntener U; Umaña P
    Biotechnol Bioeng; 2006 Apr; 93(5):851-61. PubMed ID: 16435400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.
    Hodoniczky J; Zheng YZ; James DC
    Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Fc Double-Engineered CD20 Antibody with Enhanced Ability to Trigger Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity.
    Wirt T; Rosskopf S; Rösner T; Eichholz KM; Kahrs A; Lutz S; Kretschmer A; Valerius T; Klausz K; Otte A; Gramatzki M; Peipp M; Kellner C
    Transfus Med Hemother; 2017 Sep; 44(5):292-300. PubMed ID: 29070974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of complement-dependent cytotoxicity using ATP measurement and C1q/C4b binding.
    Broyer L; Goetsch L; Broussas M
    Methods Mol Biol; 2013; 988():319-29. PubMed ID: 23475729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering with Fc Glyco-Engineering.
    Roßkopf S; Eichholz KM; Winterberg D; Diemer KJ; Lutz S; Münnich IA; Klausz K; Rösner T; Valerius T; Schewe DM; Humpe A; Gramatzki M; Peipp M; Kellner C
    Antibodies (Basel); 2020 Nov; 9(4):. PubMed ID: 33212776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of cell-dependent antibody (CDA) and inhibitory antibody by protein-A affinity chromatography and the effect of fractions on antibody-dependent cellular cytotoxicity (ADCC).
    Sato N; Yabuki Y; Toh K; Ishii Y; Kikuchi K
    Immunology; 1979 Mar; 36(3):421-6. PubMed ID: 437836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.
    Liu L
    J Pharm Sci; 2015 Jun; 104(6):1866-1884. PubMed ID: 25872915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fc Engineering Approaches to Enhance the Agonism and Effector Functions of an Anti-OX40 Antibody.
    Zhang D; Goldberg MV; Chiu ML
    J Biol Chem; 2016 Dec; 291(53):27134-27146. PubMed ID: 27856634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating IgG effector function by Fc glycan engineering.
    Li T; DiLillo DJ; Bournazos S; Giddens JP; Ravetch JV; Wang LX
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3485-3490. PubMed ID: 28289219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.