These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 23851309)
1. Quantitative proteomic analysis of HER2 normal and overexpressing MCF-7 breast cancer cells revealed proteomic changes accompanied with HER2 gene amplification. Tang Y; Mackey J; Lai R; Ghosh S; Santos C; Graham K; Damaraju S; Pasdar M; Li L J Proteomics; 2013 Oct; 91():200-9. PubMed ID: 23851309 [TBL] [Abstract][Full Text] [Related]
2. Pathway-focused proteomic signatures in HER2-overexpressing breast cancer with a basal-like phenotype: new insights into de novo resistance to trastuzumab (Herceptin). Oliveras-Ferraros C; Vazquez-Martin A; Martin-Castilló B; Pérez-Martínez MC; Cufí S; Del Barco S; Bernado L; Brunet J; López-Bonet E; Menendez JA Int J Oncol; 2010 Sep; 37(3):669-78. PubMed ID: 20664936 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic Subtype Switching and Acquired ERBB2/HER2 Amplifications and Mutations in Breast Cancer Brain Metastases. Priedigkeit N; Hartmaier RJ; Chen Y; Vareslija D; Basudan A; Watters RJ; Thomas R; Leone JP; Lucas PC; Bhargava R; Hamilton RL; Chmielecki J; Puhalla SL; Davidson NE; Oesterreich S; Brufsky AM; Young L; Lee AV JAMA Oncol; 2017 May; 3(5):666-671. PubMed ID: 27926948 [TBL] [Abstract][Full Text] [Related]
4. Low-scale phosphoproteome analyses identify the mTOR effector p70 S6 kinase 1 as a specific biomarker of the dual-HER1/HER2 tyrosine kinase inhibitor lapatinib (Tykerb) in human breast carcinoma cells. Vazquez-Martin A; Oliveras-Ferraros C; Colomer R; Brunet J; Menendez JA Ann Oncol; 2008 Jun; 19(6):1097-109. PubMed ID: 18283037 [TBL] [Abstract][Full Text] [Related]
5. Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid. Whelan SA; He J; Lu M; Souda P; Saxton RE; Faull KF; Whitelegge JP; Chang HR J Proteome Res; 2012 Oct; 11(10):5034-45. PubMed ID: 22934887 [TBL] [Abstract][Full Text] [Related]
6. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α. Ceran C; Cokol M; Cingoz S; Tasan I; Ozturk M; Yagci T BMC Cancer; 2012 Oct; 12():450. PubMed ID: 23033967 [TBL] [Abstract][Full Text] [Related]
7. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Menendez JA; Vellon L; Lupu R Ann Oncol; 2005 Aug; 16(8):1253-67. PubMed ID: 15870086 [TBL] [Abstract][Full Text] [Related]
8. The positive is inside the negative: HER2-negative tumors can express the HER2 intracellular domain and present a HER2-positive phenotype. Panis C; Pizzatti L; Corrêa S; Binato R; Lemos GF; da Silva do Amaral Herrera AC; Seixas TF; Cecchini R; Abdelhay E Cancer Lett; 2015 Feb; 357(1):186-195. PubMed ID: 25434795 [TBL] [Abstract][Full Text] [Related]
9. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Zhang D; Tai LK; Wong LL; Chiu LL; Sethi SK; Koay ES Mol Cell Proteomics; 2005 Nov; 4(11):1686-96. PubMed ID: 16048908 [TBL] [Abstract][Full Text] [Related]
10. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells. Yu T; Cho BJ; Choi EJ; Park JM; Kim DH; Kim IA Oncotarget; 2016 Nov; 7(48):79089-79100. PubMed ID: 27738326 [TBL] [Abstract][Full Text] [Related]
11. Protein array technology to detect HER2 (erbB-2)-induced 'cytokine signature' in breast cancer. Vazquez-Martin A; Colomer R; Menendez JA Eur J Cancer; 2007 May; 43(7):1117-24. PubMed ID: 17379503 [TBL] [Abstract][Full Text] [Related]
12. Tissue Microarray Is a Reliable Tool for the Evaluation of HER2 Amplification in Breast Cancer. Furrer D; Jacob S; Caron C; Sanschagrin F; Provencher L; Diorio C Anticancer Res; 2016 Sep; 36(9):4661-6. PubMed ID: 27630309 [TBL] [Abstract][Full Text] [Related]
13. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Diermeier S; Horváth G; Knuechel-Clarke R; Hofstaedter F; Szöllosi J; Brockhoff G Exp Cell Res; 2005 Apr; 304(2):604-19. PubMed ID: 15748904 [TBL] [Abstract][Full Text] [Related]
14. Basal/HER2 breast carcinomas: integrating molecular taxonomy with cancer stem cell dynamics to predict primary resistance to trastuzumab (Herceptin). Martin-Castillo B; Oliveras-Ferraros C; Vazquez-Martin A; Cufí S; Moreno JM; Corominas-Faja B; Urruticoechea A; Martín ÁG; López-Bonet E; Menendez JA Cell Cycle; 2013 Jan; 12(2):225-45. PubMed ID: 23255137 [TBL] [Abstract][Full Text] [Related]
15. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells. Vazquez-Martin A; Colomer R; Brunet J; Menendez JA Int J Oncol; 2007 Oct; 31(4):769-76. PubMed ID: 17786307 [TBL] [Abstract][Full Text] [Related]
16. Modelling hypersensitivity to trastuzumab defines biomarkers of response in HER2 positive breast cancer. Díaz-Gil L; Brasó-Maristany F; Locatelli C; Centa A; Győrffy B; Ocaña A; Prat A; Pandiella A J Exp Clin Cancer Res; 2021 Oct; 40(1):313. PubMed ID: 34620206 [TBL] [Abstract][Full Text] [Related]
17. FSIP1 binds HER2 directly to regulate breast cancer growth and invasiveness. Liu T; Zhang H; Sun L; Zhao D; Liu P; Yan M; Zaidi N; Izadmehr S; Gupta A; Abu-Amer W; Luo M; Yang J; Ou X; Wang Y; Bai X; Wang Y; New MI; Zaidi M; Yuen T; Liu C Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7683-7688. PubMed ID: 28674022 [TBL] [Abstract][Full Text] [Related]
18. Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer. Cabezón T; Gromova I; Gromov P; Serizawa R; Timmermans Wielenga V; Kroman N; Celis JE; Moreira JM Mol Cell Proteomics; 2013 Feb; 12(2):381-94. PubMed ID: 23172894 [TBL] [Abstract][Full Text] [Related]
19. miR-200c suppresses stemness and increases cellular sensitivity to trastuzumab in HER2+ breast cancer. Tang H; Song C; Ye F; Gao G; Ou X; Zhang L; Xie X; Xie X J Cell Mol Med; 2019 Dec; 23(12):8114-8127. PubMed ID: 31599500 [TBL] [Abstract][Full Text] [Related]
20. Growth differentiation factor 15 (GDF15)-mediated HER2 phosphorylation reduces trastuzumab sensitivity of HER2-overexpressing breast cancer cells. Joshi JP; Brown NE; Griner SE; Nahta R Biochem Pharmacol; 2011 Nov; 82(9):1090-9. PubMed ID: 21803025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]