These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
822 related articles for article (PubMed ID: 23851378)
1. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378 [TBL] [Abstract][Full Text] [Related]
2. One-pot synthesis of Fe2O3 yolk-shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Son MY; Hong YJ; Lee JK; Chan Kang Y Nanoscale; 2013 Dec; 5(23):11592-7. PubMed ID: 24122066 [TBL] [Abstract][Full Text] [Related]
3. Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries. Zhang Q; Chen H; Wang J; Xu D; Li X; Yang Y; Zhang K ChemSusChem; 2014 Aug; 7(8):2325-34. PubMed ID: 24828680 [TBL] [Abstract][Full Text] [Related]
4. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514 [TBL] [Abstract][Full Text] [Related]
5. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries. Du N; Chen Y; Zhai C; Zhang H; Yang D Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163 [TBL] [Abstract][Full Text] [Related]
6. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure. Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706 [TBL] [Abstract][Full Text] [Related]
7. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Chen D; Quan H; Liang J; Guo L Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932 [TBL] [Abstract][Full Text] [Related]
8. Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries. Wen T; Wu XL; Zhang S; Wang X; Xu AW Chem Asian J; 2015 Mar; 10(3):595-601. PubMed ID: 25663599 [TBL] [Abstract][Full Text] [Related]
9. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. Chen Y; Qu B; Hu L; Xu Z; Li Q; Wang T Nanoscale; 2013 Oct; 5(20):9812-20. PubMed ID: 23969779 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096 [TBL] [Abstract][Full Text] [Related]
12. α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Lei D; Zhang M; Qu B; Chen L; Wang Y; Zhang E; Xu Z; Li Q; Wang T Nanoscale; 2012 Jun; 4(11):3422-6. PubMed ID: 22562049 [TBL] [Abstract][Full Text] [Related]
13. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Lei C; Han F; Li D; Li WC; Sun Q; Zhang XQ; Lu AH Nanoscale; 2013 Feb; 5(3):1168-75. PubMed ID: 23292140 [TBL] [Abstract][Full Text] [Related]
14. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. Hao F; Zhang Z; Yin L ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782 [TBL] [Abstract][Full Text] [Related]
17. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Chen A; Li C; Tang R; Yin L; Qi Y Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242 [TBL] [Abstract][Full Text] [Related]
18. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743 [TBL] [Abstract][Full Text] [Related]
19. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Tao H; Fan LZ; Song WL; Wu M; He X; Qu X Nanoscale; 2014 Mar; 6(6):3138-42. PubMed ID: 24496138 [TBL] [Abstract][Full Text] [Related]
20. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. Zhou L; Wu HB; Wang Z; Lou XW ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]