These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 23851443)
1. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. Chen Y; Carroll RJ; Hinz ER; Shah A; Eyler AE; Denny JC; Xu H J Am Med Inform Assoc; 2013 Dec; 20(e2):e253-9. PubMed ID: 23851443 [TBL] [Abstract][Full Text] [Related]
2. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
3. Cost-sensitive Active Learning for Phenotyping of Electronic Health Records. Ji Z; Wei Q; Franklin A; Cohen T; Xu H AMIA Jt Summits Transl Sci Proc; 2019; 2019():829-838. PubMed ID: 31259040 [TBL] [Abstract][Full Text] [Related]
4. Applying active learning to supervised word sense disambiguation in MEDLINE. Chen Y; Cao H; Mei Q; Zheng K; Xu H J Am Med Inform Assoc; 2013; 20(5):1001-6. PubMed ID: 23364851 [TBL] [Abstract][Full Text] [Related]
5. Surrogate-assisted feature extraction for high-throughput phenotyping. Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993 [TBL] [Abstract][Full Text] [Related]
6. Word2Vec inversion and traditional text classifiers for phenotyping lupus. Turner CA; Jacobs AD; Marques CK; Oates JC; Kamen DL; Anderson PE; Obeid JS BMC Med Inform Decis Mak; 2017 Aug; 17(1):126. PubMed ID: 28830409 [TBL] [Abstract][Full Text] [Related]
7. Weakly Semi-supervised phenotyping using Electronic Health records. Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111 [TBL] [Abstract][Full Text] [Related]
8. Feature extraction for phenotyping from semantic and knowledge resources. Ning W; Chan S; Beam A; Yu M; Geva A; Liao K; Mullen M; Mandl KD; Kohane I; Cai T; Yu S J Biomed Inform; 2019 Mar; 91():103122. PubMed ID: 30738949 [TBL] [Abstract][Full Text] [Related]
9. Development of an automated phenotyping algorithm for hepatorenal syndrome. Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803 [TBL] [Abstract][Full Text] [Related]
10. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. Yu S; Liao KP; Shaw SY; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T J Am Med Inform Assoc; 2015 Sep; 22(5):993-1000. PubMed ID: 25929596 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive study of named entity recognition in Chinese clinical text. Lei J; Tang B; Lu X; Gao K; Jiang M; Xu H J Am Med Inform Assoc; 2014; 21(5):808-14. PubMed ID: 24347408 [TBL] [Abstract][Full Text] [Related]
12. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation. Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212 [TBL] [Abstract][Full Text] [Related]
13. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals. Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800 [TBL] [Abstract][Full Text] [Related]
14. A study of active learning methods for named entity recognition in clinical text. Chen Y; Lasko TA; Mei Q; Denny JC; Xu H J Biomed Inform; 2015 Dec; 58():11-18. PubMed ID: 26385377 [TBL] [Abstract][Full Text] [Related]
15. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods. Nissim N; Shahar Y; Elovici Y; Hripcsak G; Moskovitch R Artif Intell Med; 2017 Sep; 81():12-32. PubMed ID: 28456512 [TBL] [Abstract][Full Text] [Related]
16. Enabling phenotypic big data with PheNorm. Yu S; Ma Y; Gronsbell J; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Liao KP; Cai T J Am Med Inform Assoc; 2018 Jan; 25(1):54-60. PubMed ID: 29126253 [TBL] [Abstract][Full Text] [Related]
17. Relational machine learning for electronic health record-driven phenotyping. Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351 [TBL] [Abstract][Full Text] [Related]
18. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology. Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713 [TBL] [Abstract][Full Text] [Related]
19. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records. Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the Portability of Rheumatoid Arthritis Phenotyping Algorithms: A Case Study on French EHRs. Fabacher T; Sauleau EA; Leclerc Du Sablon N; Bergier H; Gottenberg JE; Coulet A; Névéol A Stud Health Technol Inform; 2023 May; 302():768-772. PubMed ID: 37203492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]