These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 23851478)

  • 1. Efficient Power-Transfer Capability Analysis of the TET System Using the Equivalent Small Parameter Method.
    Yanzhen Wu ; Hu AP; Budgett D; Malpas SC; Dissanayake T
    IEEE Trans Biomed Circuits Syst; 2011 Jun; 5(3):272-82. PubMed ID: 23851478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power flow control based solely on slow feedback loop for heart pump applications.
    Wang B; Hu AP; Budgett D
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):279-86. PubMed ID: 23853149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive component selection for TET powered medical devices.
    Leung HY; Budgett DM; Hu P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2913-6. PubMed ID: 22254950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study of a TET System for Implantable Biomedical Devices.
    Dissanayake TD; Hu AP; Malpas S; Bennet L; Taberner A; Booth L; Budgett D
    IEEE Trans Biomed Circuits Syst; 2009 Dec; 3(6):370-8. PubMed ID: 23853284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and Design of Single-Ended Resonant Converter for Wireless Power Transfer Systems.
    Li Q; Duan S; Fu H
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.
    Qianhong Chen ; Siu Chung Wong ; Tse CK; Xinbo Ruan
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):23-31. PubMed ID: 23853160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A frequency control method for regulating wireless power to implantable devices.
    Ping Si ; Hu AP; Malpas S; Budgett D
    IEEE Trans Biomed Circuits Syst; 2008 Mar; 2(1):22-9. PubMed ID: 23852630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous energy transfer system performance evaluation.
    Mussivand T; Miller JA; Santerre PJ; Belanger G; Rajagopalan KC; Hendry PJ; Masters RG; Holmes KS; Robichaud R; Keaney M
    Artif Organs; 1993 Nov; 17(11):940-7. PubMed ID: 8110063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.
    Ramrakhyani AK; Mirabbasi S; Mu Chiao
    IEEE Trans Biomed Circuits Syst; 2011 Feb; 5(1):48-63. PubMed ID: 23850978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.
    Naresh P; Hitesh C; Patel A; Kolge T; Sharma A; Mittal KC
    Rev Sci Instrum; 2013 Aug; 84(8):084706. PubMed ID: 24007087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.
    Patel A; Nagesh KV; Kolge T; Chakravarthy DP
    Rev Sci Instrum; 2011 Apr; 82(4):045111. PubMed ID: 21529043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter.
    Ozeri S; Shmilovitz D; Singer S; Wang CC
    Ultrasonics; 2010 Jun; 50(7):666-74. PubMed ID: 20219226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary study of a new type of energy transmission system for artificial hearts.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Ono T; Kouno A; Ishimaru M; Mochizuki S; Takiura K; Baba A; Toyama T; Imachi K
    J Artif Organs; 2003; 6(1):14-9. PubMed ID: 14598119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 Jun; 20(6):621-4. PubMed ID: 8817967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon photonics manufacturing.
    Zortman WA; Trotter DC; Watts MR
    Opt Express; 2010 Nov; 18(23):23598-607. PubMed ID: 21164704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.