These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23851643)

  • 1. Universal labeling of 5'-triphosphate RNAs by artificial RNA ligase enzyme with broad substrate specificity.
    Haugner JC; Seelig B
    Chem Commun (Camb); 2013 Aug; 49(66):7322-4. PubMed ID: 23851643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA ligases.
    Nichols NM; Tabor S; McReynolds LA
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.15. PubMed ID: 18972386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic minimization of RNA ligase ribozyme through large-scale design-synthesis-sequence cycles.
    Nomura Y; Yokobayashi Y
    Nucleic Acids Res; 2019 Sep; 47(17):8950-8960. PubMed ID: 31504757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The secondary structure and sequence optimization of an RNA ligase ribozyme.
    Ekland EH; Bartel DP
    Nucleic Acids Res; 1995 Aug; 23(16):3231-8. PubMed ID: 7667099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1.
    Blondal T; Hjorleifsdottir SH; Fridjonsson OF; Aevarsson A; Skirnisdottir S; Hermannsdottir AG; Hreggvidsson GO; Smith AV; Kristjansson JK
    Nucleic Acids Res; 2003 Dec; 31(24):7247-54. PubMed ID: 14654700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput sequencing reveals circular substrates for an archaeal RNA ligase.
    Becker HF; Héliou A; Djaout K; Lestini R; Regnier M; Myllykallio H
    RNA Biol; 2017 Aug; 14(8):1075-1085. PubMed ID: 28277897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward.
    Nandakumar J; Shuman S; Lima CD
    Cell; 2006 Oct; 127(1):71-84. PubMed ID: 17018278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of domain enzymes from wheat RNA ligase for in vitro preparation of RNA molecules.
    Makino S; Sawasaki T; Endo Y; Takai K
    Biochem Biophys Res Commun; 2011 Jan; 404(4):1050-4. PubMed ID: 21187077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo synthesis and development of an RNA enzyme.
    Ikawa Y; Tsuda K; Matsumura S; Inoue T
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13750-5. PubMed ID: 15365187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of ATP derivatives of compounds of the mevalonate pathway (isopentenyl di- and triphosphate; geranyl di- and triphosphate, farnesyl di- and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases Potential relationship with the effect of bisphosphonates on osteoclasts.
    Sillero MA; de Diego A; Tavares JE; Silva JA; Pérez-Zúñiga FJ; Sillero A
    Biochem Pharmacol; 2009 Aug; 78(4):335-43. PubMed ID: 19414000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2.
    Nandakumar J; Ho CK; Lima CD; Shuman S
    J Biol Chem; 2004 Jul; 279(30):31337-47. PubMed ID: 15084599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase.
    Remus BS; Goldgur Y; Shuman S
    Nucleic Acids Res; 2017 Dec; 45(22):12945-12953. PubMed ID: 29165709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Niche partitioning in the coevolution of 2 distinct RNA enzymes.
    Voytek SB; Joyce GF
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7780-5. PubMed ID: 19416904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducible and efficient new method of RNA 3'-end labelling by CutA nucleotidyltransferase-mediated CC-tailing.
    Tomecki R; Kobylecki K; Drazkowska K; Hyjek-Skladanowska M; Dziembowski A
    RNA Biol; 2021 Nov; 18(sup2):623-639. PubMed ID: 34766865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme.
    Zhelkovsky AM; McReynolds LA
    BMC Mol Biol; 2012 Jul; 13():24. PubMed ID: 22809063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.
    Gu H; Yoshinari S; Ghosh R; Ignatochkina AV; Gollnick PD; Murakami KS; Ho CK
    Nucleic Acids Res; 2016 Mar; 44(5):2337-47. PubMed ID: 26896806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient splinted ligation of synthetic RNA using RNA ligase.
    Stark MR; Rader SD
    Methods Mol Biol; 2014; 1126():137-49. PubMed ID: 24549661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA and RNA ligases: structural variations and shared mechanisms.
    Pascal JM
    Curr Opin Struct Biol; 2008 Feb; 18(1):96-105. PubMed ID: 18262407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction.
    Matsumura S; Ohmori R; Saito H; Ikawa Y; Inoue T
    FEBS Lett; 2009 Sep; 583(17):2819-26. PubMed ID: 19631647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function correlations derived from faster variants of a RNA ligase deoxyribozyme.
    Prior TK; Semlow DR; Flynn-Charlebois A; Rashid I; Silverman SK
    Nucleic Acids Res; 2004; 32(3):1075-82. PubMed ID: 14960718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.