These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 23852340)
1. Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Marco S; Giralt A; Petrovic MM; Pouladi MA; Martínez-Turrillas R; Martínez-Hernández J; Kaltenbach LS; Torres-Peraza J; Graham RK; Watanabe M; Luján R; Nakanishi N; Lipton SA; Lo DC; Hayden MR; Alberch J; Wesseling JF; Pérez-Otaño I Nat Med; 2013 Aug; 19(8):1030-8. PubMed ID: 23852340 [TBL] [Abstract][Full Text] [Related]
2. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655 [TBL] [Abstract][Full Text] [Related]
3. GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models. Mahfooz K; Marco S; Martínez-Turrillas R; Raja MK; Pérez-Otaño I; Wesseling JF Neurobiol Dis; 2016 Sep; 93():47-56. PubMed ID: 27072890 [TBL] [Abstract][Full Text] [Related]
4. Modulation of GluN3A expression in Huntington disease: a new n-methyl-D-aspartate receptor-based therapeutic approach? Wesseling JF; Pérez-Otaño I JAMA Neurol; 2015 Apr; 72(4):468-73. PubMed ID: 25686081 [TBL] [Abstract][Full Text] [Related]
5. RNAi-Based GluN3A Silencing Prevents and Reverses Disease Phenotypes Induced by Mutant huntingtin. Marco S; Murillo A; Pérez-Otaño I Mol Ther; 2018 Aug; 26(8):1965-1972. PubMed ID: 29914757 [TBL] [Abstract][Full Text] [Related]
6. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Milnerwood AJ; Kaufman AM; Sepers MD; Gladding CM; Zhang L; Wang L; Fan J; Coquinco A; Qiao JY; Lee H; Wang YT; Cynader M; Raymond LA Neurobiol Dis; 2012 Oct; 48(1):40-51. PubMed ID: 22668780 [TBL] [Abstract][Full Text] [Related]
7. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. Van Raamsdonk JM; Pearson J; Murphy Z; Hayden MR; Leavitt BR BMC Neurosci; 2006 Dec; 7():80. PubMed ID: 17147801 [TBL] [Abstract][Full Text] [Related]
8. SAP97-mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington's disease. Ambroziak W; Fourie C; Montgomery JM Hippocampus; 2018 Oct; 28(10):707-723. PubMed ID: 30067285 [TBL] [Abstract][Full Text] [Related]
9. Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington's disease. Fan J; Cowan CM; Zhang LY; Hayden MR; Raymond LA J Neurosci; 2009 Sep; 29(35):10928-38. PubMed ID: 19726651 [TBL] [Abstract][Full Text] [Related]
10. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. Cowan CM; Fan MM; Fan J; Shehadeh J; Zhang LY; Graham RK; Hayden MR; Raymond LA J Neurosci; 2008 Nov; 28(48):12725-35. PubMed ID: 19036965 [TBL] [Abstract][Full Text] [Related]
11. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model. Gladding CM; Sepers MD; Xu J; Zhang LY; Milnerwood AJ; Lombroso PJ; Raymond LA Hum Mol Genet; 2012 Sep; 21(17):3739-52. PubMed ID: 22523092 [TBL] [Abstract][Full Text] [Related]
12. Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. Zheng S; Clabough EB; Sarkar S; Futter M; Rubinsztein DC; Zeitlin SO PLoS Genet; 2010 Feb; 6(2):e1000838. PubMed ID: 20140187 [TBL] [Abstract][Full Text] [Related]
13. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Fan J; Gladding CM; Wang L; Zhang LY; Kaufman AM; Milnerwood AJ; Raymond LA Neurobiol Dis; 2012 Mar; 45(3):999-1009. PubMed ID: 22198502 [TBL] [Abstract][Full Text] [Related]
14. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington's disease. Pryor WM; Biagioli M; Shahani N; Swarnkar S; Huang WC; Page DT; MacDonald ME; Subramaniam S Sci Signal; 2014 Oct; 7(349):ra103. PubMed ID: 25351248 [TBL] [Abstract][Full Text] [Related]
15. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease. Stanek LM; Sardi SP; Mastis B; Richards AR; Treleaven CM; Taksir T; Misra K; Cheng SH; Shihabuddin LS Hum Gene Ther; 2014 May; 25(5):461-74. PubMed ID: 24484067 [TBL] [Abstract][Full Text] [Related]
16. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease. Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573 [TBL] [Abstract][Full Text] [Related]
17. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Li L; Fan M; Icton CD; Chen N; Leavitt BR; Hayden MR; Murphy TH; Raymond LA Neurobiol Aging; 2003 Dec; 24(8):1113-21. PubMed ID: 14643383 [TBL] [Abstract][Full Text] [Related]
18. Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease. Dai Y; Dudek NL; Li Q; Fowler SC; Muma NA J Neurosci; 2009 Sep; 29(37):11550-9. PubMed ID: 19759302 [TBL] [Abstract][Full Text] [Related]
19. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease. Laforet GA; Sapp E; Chase K; McIntyre C; Boyce FM; Campbell M; Cadigan BA; Warzecki L; Tagle DA; Reddy PH; Cepeda C; Calvert CR; Jokel ES; Klapstein GJ; Ariano MA; Levine MS; DiFiglia M; Aronin N J Neurosci; 2001 Dec; 21(23):9112-23. PubMed ID: 11717344 [TBL] [Abstract][Full Text] [Related]
20. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease. Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]