These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23852672)

  • 1. Global optimization of parameters in the reactive force field ReaxFF for SiOH.
    Larsson HR; van Duin AC; Hartke B
    J Comput Chem; 2013 Sep; 34(25):2178-89. PubMed ID: 23852672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient global optimization of reactive force-field parameters.
    Dittner M; Müller J; Aktulga HM; Hartke B
    J Comput Chem; 2015 Jul; 36(20):1550-61. PubMed ID: 26085201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterization of a reactive force field using a Monte Carlo algorithm.
    Iype E; Hütter M; Jansen AP; Nedea SV; Rindt CC
    J Comput Chem; 2013 May; 34(13):1143-54. PubMed ID: 23420666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ReaxFF Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines and Insights.
    Shchygol G; Yakovlev A; Trnka T; van Duin ACT; Verstraelen T
    J Chem Theory Comput; 2019 Dec; 15(12):6799-6812. PubMed ID: 31657217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A test on reactive force fields for the study of silica dimerization reactions.
    Moqadam M; Riccardi E; Trinh TT; Åstrand PO; van Erp TS
    J Chem Phys; 2015 Nov; 143(18):184113. PubMed ID: 26567652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
    Furman D; Carmeli B; Zeiri Y; Kosloff R
    J Chem Theory Comput; 2018 Jun; 14(6):3100-3112. PubMed ID: 29727570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic algorithm optimization of point charges in force field development: challenges and insights.
    Ivanov MV; Talipov MR; Timerghazin QK
    J Phys Chem A; 2015 Feb; 119(8):1422-34. PubMed ID: 25648549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAX-ReaxFF: A Gradient-Based Framework for Fast Optimization of Reactive Force Fields.
    Kaymak MC; Rahnamoun A; O'Hearn KA; van Duin ACT; Merz KM; Aktulga HM
    J Chem Theory Comput; 2022 Sep; 18(9):5181-5194. PubMed ID: 35978524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide.
    Jaramillo-Botero A; Naserifar S; Goddard WA
    J Chem Theory Comput; 2014 Apr; 10(4):1426-39. PubMed ID: 26580361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate photochemical dynamics of azobenzene with reactive force fields.
    Li Y; Hartke B
    J Chem Phys; 2013 Dec; 139(22):224303. PubMed ID: 24329064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and application of lithium parameters for the reactive force field, ReaxFF.
    Han SS; van Duin AC; Goddard WA; Lee HM
    J Phys Chem A; 2005 May; 109(20):4575-82. PubMed ID: 16833794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
    Müller J; Hartke B
    J Chem Theory Comput; 2016 Aug; 12(8):3913-25. PubMed ID: 27415976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paramfit: automated optimization of force field parameters for molecular dynamics simulations.
    Betz RM; Walker RC
    J Comput Chem; 2015 Jan; 36(2):79-87. PubMed ID: 25413259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field.
    Kamat AM; van Duin AC; Yakovlev A
    J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of best-fit potential parameters for a reactive force field using a genetic algorithm.
    Pahari P; Chaturvedi S
    J Mol Model; 2012 Mar; 18(3):1049-61. PubMed ID: 21667073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes.
    Deetz JD; Faller R
    J Phys Chem B; 2014 Sep; 118(37):10966-78. PubMed ID: 25153668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks.
    Xue LY; Guo F; Wen YS; Feng SQ; Huang XN; Guo L; Li HS; Cui SX; Zhang GQ; Wang QL
    Phys Chem Chem Phys; 2021 Sep; 23(35):19457-19464. PubMed ID: 34524283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.
    Trnka T; Tvaroška I; Koča J
    J Chem Theory Comput; 2018 Jan; 14(1):291-302. PubMed ID: 29156140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ForceFit: a code to fit classical force fields to quantum mechanical potential energy surfaces.
    Waldher B; Kuta J; Chen S; Henson N; Clark AE
    J Comput Chem; 2010 Sep; 31(12):2307-16. PubMed ID: 20340109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using genetic algorithms with subjective input from human subjects: implications for fitting hearing aids and cochlear implants.
    Başkent D; Eiler CL; Edwards B
    Ear Hear; 2007 Jun; 28(3):370-80. PubMed ID: 17485986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.