BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 2385294)

  • 21. Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors.
    Seto E; Mitchell PJ; Yen TS
    Nature; 1990 Mar; 344(6261):72-4. PubMed ID: 2154703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer.
    Johnson JE; Birren SJ; Saito T; Anderson DJ
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3596-600. PubMed ID: 1314394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the g.-723G-->T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein-Friesian cattle.
    Robakowska-Hyzorek D; Oprzadek J; Zelazowska B; Olbromski R; Zwierzchowski L
    Biochem Genet; 2010 Jun; 48(5-6):450-64. PubMed ID: 20127165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cAMP-dependent protein kinase represses myogenic differentiation and the activity of the muscle-specific helix-loop-helix transcription factors Myf-5 and MyoD.
    Winter B; Braun T; Arnold HH
    J Biol Chem; 1993 May; 268(13):9869-78. PubMed ID: 8387507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paired MyoD-binding sites regulate myosin light chain gene expression.
    Wentworth BM; Donoghue M; Engert JC; Berglund EB; Rosenthal N
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1242-6. PubMed ID: 1847512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 23-amino acid motif spanning the basic domain targets zebrafish myogenic regulatory factor myf5 into nucleolus.
    Wang YH; Chen YH; Lu JH; Tsai HJ
    DNA Cell Biol; 2005 Oct; 24(10):651-60. PubMed ID: 16225396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myf5 is a novel early axonal marker in the mouse brain and is subjected to post-transcriptional regulation in neurons.
    Daubas P; Tajbakhsh S; Hadchouel J; Primig M; Buckingham M
    Development; 2000 Jan; 127(2):319-31. PubMed ID: 10603349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors.
    Asakura A; Fujisawa-Sehara A; Komiya T; Nabeshima Y; Nabeshima Y
    Mol Cell Biol; 1993 Nov; 13(11):7153-62. PubMed ID: 8413304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-operativity of functional domains in the muscle-specific transcription factor Myf-5.
    Winter B; Braun T; Arnold HH
    EMBO J; 1992 May; 11(5):1843-55. PubMed ID: 1582413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the inhibition of MyoD activity by ITF-2B and full-length E12/E47.
    Petropoulos H; Skerjanc IS
    J Biol Chem; 2000 Aug; 275(33):25095-101. PubMed ID: 10833525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular biology of myogenic regulatory factors.
    Funk WD; Ouellette M; Wright WE
    Mol Biol Med; 1991 Apr; 8(2):185-95. PubMed ID: 1806761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions among vertebrate helix-loop-helix proteins in yeast using the two-hybrid system.
    Staudinger J; Perry M; Elledge SJ; Olson EN
    J Biol Chem; 1993 Mar; 268(7):4608-11. PubMed ID: 8383120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts.
    Carnac G; Primig M; Kitzmann M; Chafey P; Tuil D; Lamb N; Fernandez A
    Mol Biol Cell; 1998 Jul; 9(7):1891-902. PubMed ID: 9658178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway.
    Dechesne CA; Wei Q; Eldridge J; Gannoun-Zaki L; Millasseau P; Bougueleret L; Caterina D; Paterson BM
    Mol Cell Biol; 1994 Aug; 14(8):5474-86. PubMed ID: 8035824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family.
    Bergstrom DA; Tapscott SJ
    Mol Cell Biol; 2001 Apr; 21(7):2404-12. PubMed ID: 11259589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transactivation of capn2 by myogenic regulatory factors during myogenesis.
    Dedieu S; Mazères G; Dourdin N; Cottin P; Brustis JJ
    J Mol Biol; 2003 Feb; 326(2):453-65. PubMed ID: 12559913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis.
    Tapscott SJ; Thayer MJ; Weintraub H
    Science; 1993 Mar; 259(5100):1450-3. PubMed ID: 8383879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection and modulation in vivo of helix-loop-helix protein-protein interactions.
    Finkel T; Duc J; Fearon ER; Dang CV; Tomaselli GF
    J Biol Chem; 1993 Jan; 268(1):5-8. PubMed ID: 8380166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The MRF4 activation domain is required to induce muscle-specific gene expression.
    Mak KL; To RQ; Kong Y; Konieczny SF
    Mol Cell Biol; 1992 Oct; 12(10):4334-46. PubMed ID: 1328851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 9-cis-retinoic acid regulates the expression of the muscle determination gene Myf5.
    Carnac G; Albagli-Curiel O; Levin A; Bonnieu A
    Endocrinology; 1993 Nov; 133(5):2171-6. PubMed ID: 8404668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.