These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 23852958)
1. CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior. Cheng J; Wang B; Park CM; Wu Y; Huang H; Nie F Chemistry; 2013 Jul; 19(30):9866-74. PubMed ID: 23852958 [TBL] [Abstract][Full Text] [Related]
2. Sandwich-Like CNT@Fe Zhang Y; Tang Y; Gao S; Jia D; Ma J; Liu L ACS Appl Mater Interfaces; 2017 Jan; 9(2):1453-1458. PubMed ID: 28005318 [TBL] [Abstract][Full Text] [Related]
3. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841 [TBL] [Abstract][Full Text] [Related]
4. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Bhuvaneswari S; Pratheeksha PM; Anandan S; Rangappa D; Gopalan R; Rao TN Phys Chem Chem Phys; 2014 Mar; 16(11):5284-94. PubMed ID: 24496151 [TBL] [Abstract][Full Text] [Related]
5. Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries. Lei C; Han F; Sun Q; Li WC; Lu AH Chemistry; 2014 Jan; 20(1):139-45. PubMed ID: 24273057 [TBL] [Abstract][Full Text] [Related]
6. In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. Lang L; Xu Z ACS Appl Mater Interfaces; 2013 Mar; 5(5):1698-703. PubMed ID: 23387966 [TBL] [Abstract][Full Text] [Related]
7. Heterostructured core-shell ZnMn₂O₄ nanosheets@carbon nanotubes' coaxial nanocables: a competitive anode towards high-performance Li-ion batteries. Yuan C; Zhang L; Zhu S; Cao H; Lin J; Hou L Nanotechnology; 2015 Apr; 26(14):145401. PubMed ID: 25785913 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation. Bao S; Tu M; Huang H; Wang C; Chen Y; Sun B; Xu B J Colloid Interface Sci; 2021 Nov; 601():283-293. PubMed ID: 34087591 [TBL] [Abstract][Full Text] [Related]
9. A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Liu B; Zhao X; Tian Y; Zhao D; Hu C; Cao M Phys Chem Chem Phys; 2013 Jun; 15(22):8831-7. PubMed ID: 23646353 [TBL] [Abstract][Full Text] [Related]
10. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Ma C; Zhang W; He YS; Gong Q; Che H; Ma ZF Nanoscale; 2016 Feb; 8(7):4121-6. PubMed ID: 26866581 [TBL] [Abstract][Full Text] [Related]
11. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Dong Y; Ma R; Hu M; Cheng H; Yang Q; Li YY; Zapien JA Phys Chem Chem Phys; 2013 May; 15(19):7174-81. PubMed ID: 23558566 [TBL] [Abstract][Full Text] [Related]
12. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries. Zhang W; Li X; Liang J; Tang K; Zhu Y; Qian Y Nanoscale; 2016 Feb; 8(8):4733-41. PubMed ID: 26859122 [TBL] [Abstract][Full Text] [Related]
13. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088 [TBL] [Abstract][Full Text] [Related]
14. Enhanced cycling performance of an Fe0/Fe3O4 nanocomposite electrode for lithium-ion batteries. Lee GH; Park JG; Sung YM; Chung KY; Cho WI; Kim DW Nanotechnology; 2009 Jul; 20(29):295205. PubMed ID: 19567958 [TBL] [Abstract][Full Text] [Related]
15. New synthesis of a Foamlike Fe3O4/C composite via a self-expanding process and its electrochemical performance as anode material for lithium-ion batteries. Wu F; Huang R; Mu D; Wu B; Chen S ACS Appl Mater Interfaces; 2014 Nov; 6(21):19254-64. PubMed ID: 25285603 [TBL] [Abstract][Full Text] [Related]
16. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Gao G; Zhang Q; Cheng XB; Shapter JG; Yin T; Sun R; Cui D Sci Rep; 2015 Dec; 5():17553. PubMed ID: 26631536 [TBL] [Abstract][Full Text] [Related]
17. Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Chen Y; Song B; Lu L; Xue J Nanoscale; 2013 Aug; 5(15):6797-803. PubMed ID: 23765405 [TBL] [Abstract][Full Text] [Related]
18. Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage. Li D; Li X; Wang S; Zheng Y; Qiao L; He D ACS Appl Mater Interfaces; 2014 Jan; 6(1):648-54. PubMed ID: 24320600 [TBL] [Abstract][Full Text] [Related]
19. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. Zhai C; Du N; Zhang H; Yu J; Yang D ACS Appl Mater Interfaces; 2011 Oct; 3(10):4067-74. PubMed ID: 21916448 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries. Abbasnezhad A; Asgharzadeh H; Ansari Hamedani A; Hayat Soytas S Dalton Trans; 2020 May; 49(18):5890-5897. PubMed ID: 32309834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]