BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 23852958)

  • 21. Self-assembled Fe₂O₃/graphene aerogel with high lithium storage performance.
    Xiao L; Wu D; Han S; Huang Y; Li S; He M; Zhang F; Feng X
    ACS Appl Mater Interfaces; 2013 May; 5(9):3764-9. PubMed ID: 23551107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core-shell structured MnSiO
    Feng J; Li Q; Wang H; Zhang M; Yang X; Yuan R; Chai Y
    Dalton Trans; 2018 Apr; 47(15):5328-5334. PubMed ID: 29589020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes.
    Wang B; Xin H; Li X; Cheng J; Yang G; Nie F
    Sci Rep; 2014 Jan; 4():3729. PubMed ID: 24429419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.
    Li Y; Meng Q; Zhu SM; Sun ZH; Yang H; Chen ZX; Zhu CL; Guo ZP; Zhang D
    Dalton Trans; 2015 Mar; 44(10):4594-600. PubMed ID: 25655996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.
    Wu X; Li S; Wang B; Liu J; Yu M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4505-12. PubMed ID: 26796603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coaxial Zn2GeO4@carbon nanowires directly grown on Cu foils as high-performance anodes for lithium ion batteries.
    Chen W; Lu L; Maloney S; Yang Y; Wang W
    Phys Chem Chem Phys; 2015 Feb; 17(7):5109-14. PubMed ID: 25600214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties.
    Yu R; Zhang C; Meng Q; Chen Z; Liu H; Guo Z
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12394-9. PubMed ID: 24236978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage.
    Zhou Q; Zhao Z; Wang Z; Dong Y; Wang X; Gogotsi Y; Qiu J
    Nanoscale; 2014 Feb; 6(4):2286-91. PubMed ID: 24413631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance.
    Yang Z; Lv J; Pang H; Yan W; Qian K; Guo T; Guo Z
    Sci Rep; 2015 Dec; 5():17473. PubMed ID: 26621615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-Dimensional SnSe
    Chen H; Jia BE; Lu X; Guo Y; Hu R; Khatoon R; Jiao L; Leng J; Zhang L; Lu J
    Chemistry; 2019 Jul; 25(42):9973-9983. PubMed ID: 31099094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A facile in situ synthesis of SiC&Si@CNT composite 3D frameworks as an anode material for lithium-ion batteries.
    Su W; Liang Y; Zuo Y; Tang Y
    Dalton Trans; 2019 Sep; 48(34):12964-12973. PubMed ID: 31397472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.
    Li S; Wang M; Luo Y; Huang J
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17343-51. PubMed ID: 27328774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high-performance rechargeable Mg
    Zhu C; Tang Y; Liu L; Sheng R; Li X; Gao Y; NuLi Y
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):307-313. PubMed ID: 32771740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational Design and Controllable Synthesis of Multishelled Fe
    Li F; Luo G; Chen W; Chen Y; Fang Y; Zheng M; Yu X
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36949-36959. PubMed ID: 31535843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.
    Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y
    Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube-wrapped Fe
    Gao G; Jin Y; Zeng Q; Wang D; Shen C
    Beilstein J Nanotechnol; 2017; 8():649-656. PubMed ID: 28462066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.