These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 23852958)

  • 41. Fe
    Jeon Y; Lee J; Kim M; Oh J; Hwang T; Piao Y
    Nanoscale; 2019 Mar; 11(11):4837-4845. PubMed ID: 30816391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode.
    Zeng L; Pan F; Li W; Jiang Y; Zhong X; Yu Y
    Nanoscale; 2014 Aug; 6(16):9579-87. PubMed ID: 25008943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Core-shell Ti@Si coaxial nanorod arrays formed directly on current collectors for lithium-ion batteries.
    Meng X; Deng D
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6867-74. PubMed ID: 25749298
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanostructured porous manganese carbonate spheres with capacitive effects on the high lithium storage capability.
    Kang W; Yu DY; Li W; Zhang Z; Yang X; Ng TW; Zou R; Tang Y; Zhang W; Lee CS
    Nanoscale; 2015 Jun; 7(22):10146-51. PubMed ID: 25986052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites.
    Wang J; Yu Y; Gu L; Wang C; Tang K; Maier J
    Nanoscale; 2013 Apr; 5(7):2647-50. PubMed ID: 23446310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode.
    Bhandavat R; Singh G
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5092-7. PubMed ID: 23030550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.
    Li Z; Yuan L; Yi Z; Liu Y; Xin Y; Zhang Z; Huang Y
    Nanoscale; 2014; 6(3):1653-60. PubMed ID: 24336973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance.
    Xiao Y; Cao M; Ren L; Hu C
    Nanoscale; 2012 Dec; 4(23):7469-74. PubMed ID: 23093095
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spherical CoS(2)@carbon core-shell nanoparticles: one-pot synthesis and Li storage property.
    Luo W; Xie Y; Wu C; Zheng F
    Nanotechnology; 2008 Feb; 19(7):075602. PubMed ID: 21817639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorus-Rich CuP
    Kim SO; Manthiram A
    ACS Appl Mater Interfaces; 2017 May; 9(19):16221-16227. PubMed ID: 28447777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries.
    Feng X; Yang J; Bie Y; Wang J; Nuli Y; Lu W
    Nanoscale; 2014 Nov; 6(21):12532-9. PubMed ID: 25177830
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance.
    Wang L; Zhuo L; Zhang C; Zhao F
    Chemistry; 2014 Apr; 20(15):4308-15. PubMed ID: 24590487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible FeS@Fe
    Zhang Y; Chang S; Zhang D; Zhang S; Han L; Ye L; Pang R; Shang Y; Cao A
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33761495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-Pot Synthesis of Pomegranate-Structured Fe3 O4 /Carbon Nanospheres-Doped Graphene Aerogel for High-Rate Lithium Ion Batteries.
    He D; Li L; Bai F; Zha C; Shen L; Kung HH; Bao N
    Chemistry; 2016 Mar; 22(13):4454-9. PubMed ID: 26879124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries.
    Xu JS; Zhu YJ
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4752-7. PubMed ID: 22934532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Loading Carbon Nanotubes on Polymer Nanofibers as Stand-Alone Anode Materials for Li-Ion Batteries.
    Lim AC; Jadhav HS; Kwon HJ; Seo JG
    ACS Omega; 2019 Feb; 4(2):4129-4137. PubMed ID: 31459621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage.
    Zhang J; Wang K; Xu Q; Zhou Y; Cheng F; Guo S
    ACS Nano; 2015 Mar; 9(3):3369-76. PubMed ID: 25716070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.