These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23853061)

  • 1. Capacitance effects superimposed on redox processes in molecular-cluster batteries: a synergic route to high-capacity energy storage.
    Wang H; Zeng Z; Kawasaki N; Eckert H; Yoshikawa H; Awaga K
    Chemistry; 2013 Aug; 19(34):11235-40. PubMed ID: 23853061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ XAFS studies of Mn12 molecular-cluster batteries: super-reduced Mn12 clusters in solid-state electrochemistry.
    Wang H; Hamanaka S; Yokoyama T; Yoshikawa H; Awaga K
    Chem Asian J; 2011 Apr; 6(4):1074-9. PubMed ID: 21265025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mn
    Tombers M; Meyer J; Meyer J; Lawicki A; Zamudio-Bayer V; Hirsch K; Lau JT; von Issendorff B; Terasaki A; Schlathölter TA; Hoekstra RA; Schmidt S; Powell AK; Kessler E; Prosenc MH; van Wüllen C; Niedner-Schatteburg G
    Chemistry; 2022 Jan; 28(2):e202102592. PubMed ID: 34806228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rechargeable batteries driven by redox reactions of Mn12 clusters with structural changes: XAFS analyses of the charging/discharging processes in molecular cluster batteries.
    Yoshikawa H; Hamanaka S; Miyoshi Y; Kondo Y; Shigematsu S; Akutagawa N; Sato M; Yokoyama T; Awaga K
    Inorg Chem; 2009 Oct; 48(19):9057-9. PubMed ID: 19746899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study.
    Okumura T; Fukutsuka T; Matsumoto K; Orikasa Y; Arai H; Ogumi Z; Uchimoto Y
    Dalton Trans; 2011 Oct; 40(38):9752-64. PubMed ID: 21869978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitance of carbon-based electrical double-layer capacitors.
    Ji H; Zhao X; Qiao Z; Jung J; Zhu Y; Lu Y; Zhang LL; MacDonald AH; Ruoff RS
    Nat Commun; 2014; 5():3317. PubMed ID: 24557361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor.
    Pognon G; Cougnon C; Mayilukila D; Bélanger D
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3788-96. PubMed ID: 22803766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges.
    Wang H; Hamanaka S; Nishimoto Y; Irle S; Yokoyama T; Yoshikawa H; Awaga K
    J Am Chem Soc; 2012 Mar; 134(10):4918-24. PubMed ID: 22352694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mn12O12(OMe)2(O2CPh)16(H2O)2]2- single-molecule magnets and other manganese compounds from a reductive aggregation procedure.
    Tasiopoulos AJ; Wernsdorfer W; Abboud KA; Christou G
    Inorg Chem; 2005 Sep; 44(18):6324-38. PubMed ID: 16124812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage.
    Liu T; Kavian R; Chen Z; Cruz SS; Noda S; Lee SW
    Nanoscale; 2016 Feb; 8(6):3671-7. PubMed ID: 26809548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries.
    Subban CV; Ati M; Rousse G; Abakumov AM; Van Tendeloo G; Janot R; Tarascon JM
    J Am Chem Soc; 2013 Mar; 135(9):3653-61. PubMed ID: 23373730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule magnets: structural characterization, magnetic properties, and (19)F NMR spectroscopy of a Mn(12) family spanning three oxidation levels.
    Chakov NE; Soler M; Wernsdorfer W; Abboud KA; Christou G
    Inorg Chem; 2005 Jul; 44(15):5304-21. PubMed ID: 16022529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.