These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878 [TBL] [Abstract][Full Text] [Related]
23. Materials for electrochemical capacitors. Simon P; Gogotsi Y Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000 [TBL] [Abstract][Full Text] [Related]
24. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
25. High-energy redox-flow batteries with hybrid metal foam electrodes. Park MS; Lee NJ; Lee SW; Kim KJ; Oh DJ; Kim YJ ACS Appl Mater Interfaces; 2014 Jul; 6(13):10729-35. PubMed ID: 24906030 [TBL] [Abstract][Full Text] [Related]
27. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials. Desmaizieres G; Speer ME; Thiede I; Gaiser P; Perner V; Kolek M; Bieker P; Winter M; Esser B Macromol Rapid Commun; 2021 Sep; 42(18):e2000725. PubMed ID: 33660343 [TBL] [Abstract][Full Text] [Related]
28. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach. Svegl IG; Bele M; Ogorevc B Anal Chim Acta; 2008 Nov; 628(2):173-80. PubMed ID: 18929005 [TBL] [Abstract][Full Text] [Related]
29. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries. Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504 [TBL] [Abstract][Full Text] [Related]
30. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes. Malkhandi S; Yang B; Manohar AK; Prakash GK; Narayanan SR J Am Chem Soc; 2013 Jan; 135(1):347-53. PubMed ID: 23237487 [TBL] [Abstract][Full Text] [Related]
31. Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. Reddy MV; Wen BL; Loh KP; Chowdari BV ACS Appl Mater Interfaces; 2013 Aug; 5(16):7777-85. PubMed ID: 23869790 [TBL] [Abstract][Full Text] [Related]
32. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Shaju KM; Jiao F; Débart A; Bruce PG Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496 [TBL] [Abstract][Full Text] [Related]
33. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944 [TBL] [Abstract][Full Text] [Related]
34. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. Malvankar NS; Mester T; Tuominen MT; Lovley DR Chemphyschem; 2012 Feb; 13(2):463-8. PubMed ID: 22253215 [TBL] [Abstract][Full Text] [Related]
35. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
36. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Zhu Y; Xu Y; Liu Y; Luo C; Wang C Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803 [TBL] [Abstract][Full Text] [Related]
37. MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. Chen X; Zhu H; Chen YC; Shang Y; Cao A; Hu L; Rubloff GW ACS Nano; 2012 Sep; 6(9):7948-55. PubMed ID: 22871063 [TBL] [Abstract][Full Text] [Related]
38. New polynuclear manganese clusters from the use of the hydrophobic carboxylate ligand 2,2-dimethylbutyrate. Chakov NE; Zakharov LN; Rheingold AL; Abboud KA; Christou G Inorg Chem; 2005 Jun; 44(13):4555-67. PubMed ID: 15962962 [TBL] [Abstract][Full Text] [Related]
39. Single-molecule magnets: a reductive aggregation route to new types of Mn12 complexes. King P; Wernsdorfer W; Abboud KA; Christou G Inorg Chem; 2005 Nov; 44(24):8659-69. PubMed ID: 16296819 [TBL] [Abstract][Full Text] [Related]
40. Solid Suspension Flow Batteries Using Earth Abundant Materials. Mubeen S; Jun YS; Lee J; McFarland EW ACS Appl Mater Interfaces; 2016 Jan; 8(3):1759-65. PubMed ID: 26727225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]