These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Using mesoporous carbon electrodes for brackish water desalination. Zou L; Li L; Song H; Morris G Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527 [TBL] [Abstract][Full Text] [Related]
43. Capacitive energy storage in nanostructured carbon-electrolyte systems. Simon P; Gogotsi Y Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843 [TBL] [Abstract][Full Text] [Related]
44. Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes. Hulicova-Jurcakova D; Fiset E; Lu GQ; Bandosz TJ ChemSusChem; 2012 Nov; 5(11):2188-99. PubMed ID: 23086734 [TBL] [Abstract][Full Text] [Related]
45. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance. Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940 [TBL] [Abstract][Full Text] [Related]
46. Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor. Ryu KS; Jeong SK; Joo J; Kim KM J Phys Chem B; 2007 Feb; 111(4):731-9. PubMed ID: 17249816 [TBL] [Abstract][Full Text] [Related]
47. Microparticle electrodes and single particle microbatteries: electrochemical and in situ microRaman spectroscopic studies. Jebaraj AJ; Scherson DA Acc Chem Res; 2013 May; 46(5):1192-205. PubMed ID: 23530836 [TBL] [Abstract][Full Text] [Related]
48. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. Sathiya M; Prakash AS; Ramesha K; Tarascon JM; Shukla AK J Am Chem Soc; 2011 Oct; 133(40):16291-9. PubMed ID: 21888392 [TBL] [Abstract][Full Text] [Related]
49. Redox centers evolution in phospho-olivine type (LiFe0.5Mn0.5 PO4) nanoplatelets with uniform cation distribution. Paolella A; Bertoni G; Dilena E; Marras S; Ansaldo A; Manna L; George C Nano Lett; 2014 Mar; 14(3):1477-83. PubMed ID: 24564785 [TBL] [Abstract][Full Text] [Related]
50. Enhanced electric double-layer capacitance by desolvation of lithium ions in confined nanospaces of microporous carbon. Urita K; Ide N; Isobe K; Furukawa H; Moriguchi I ACS Nano; 2014 Apr; 8(4):3614-9. PubMed ID: 24646017 [TBL] [Abstract][Full Text] [Related]
52. Highly conductive nanostructured C-TiO2 electrodes with enhanced electrochemical stability and double layer charge storage capacitance. Mole F; Wang J; Clayton DA; Xu C; Pan S Langmuir; 2012 Jul; 28(28):10610-9. PubMed ID: 22757967 [TBL] [Abstract][Full Text] [Related]
53. Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocenyl termini. Ornelas C; Ruiz J; Belin C; Astruc D J Am Chem Soc; 2009 Jan; 131(2):590-601. PubMed ID: 19113856 [TBL] [Abstract][Full Text] [Related]
54. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. Wang C; Yin L; Xiang D; Qi Y ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097 [TBL] [Abstract][Full Text] [Related]
55. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
56. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. Lee SW; Kim J; Chen S; Hammond PT; Shao-Horn Y ACS Nano; 2010 Jul; 4(7):3889-96. PubMed ID: 20552996 [TBL] [Abstract][Full Text] [Related]
57. Stabilizing high-valent metal ions with a ketimide ligand set: synthesis of Mn(N=C(t)Bu2)4. Lewis RA; Wu G; Hayton TW Inorg Chem; 2011 May; 50(10):4660-8. PubMed ID: 21486021 [TBL] [Abstract][Full Text] [Related]
58. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. Su DS; Schlögl R ChemSusChem; 2010 Feb; 3(2):136-68. PubMed ID: 20157927 [TBL] [Abstract][Full Text] [Related]
59. Electrochemistry of niobium(V) in sulfuric and methanesulfonic acids: formation of the Nb3O2(SO4)6(H2O)(3)(5-) cluster and designed electrochemical generation of "Nb3O2" core clusters by double potential pulse electrolysis. May M; Gantt M; Hoadley C; Batten T; Sayers W; Katovic V Inorg Chem; 2003 Nov; 42(22):7137-47. PubMed ID: 14577782 [TBL] [Abstract][Full Text] [Related]
60. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO(4)](-). Zheng JP; Goonetilleke PC; Pettit CM; Roy D Talanta; 2010 May; 81(3):1045-55. PubMed ID: 20298892 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]