BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23853114)

  • 1. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material.
    Nayak S; Kundu SC
    J Biomed Mater Res A; 2014 Jun; 102(6):1928-40. PubMed ID: 23853114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications.
    Mandal BB; Ghosh B; Kundu SC
    Int J Biol Macromol; 2011 Aug; 49(2):125-33. PubMed ID: 21549749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications.
    Mandal BB; Priya AS; Kundu SC
    Acta Biomater; 2009 Oct; 5(8):3007-20. PubMed ID: 19398392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.
    Nayak S; Dey S; Kundu SC
    PLoS One; 2013; 8(9):e74779. PubMed ID: 24058626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application.
    Tao G; Wang Y; Cai R; Chang H; Song K; Zuo H; Zhao P; Xia Q; He H
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():341-351. PubMed ID: 31029327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.
    Yang M; Mandal N; Shuai Y; Zhou G; Min S; Zhu L
    Biomed Mater Eng; 2014; 24(1):815-24. PubMed ID: 24211968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering.
    Nayak S; Talukdar S; Kundu SC
    Cell Tissue Res; 2012 Mar; 347(3):783-94. PubMed ID: 22327482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing - In vitro and in vivo investigations.
    Sapru S; Das S; Mandal M; Ghosh AK; Kundu SC
    Acta Biomater; 2018 Sep; 78():137-150. PubMed ID: 30059800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute.
    Sapru S; Ghosh AK; Kundu SC
    Carbohydr Polym; 2017 Jul; 167():196-209. PubMed ID: 28433154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk.
    Wang F; Wang Y; Tian C; Xu S; Wang R; Hou K; Chen W; Zhao P; Yu L; Lu Z; Kaplan DL; Xia Q
    Acta Biomater; 2018 Oct; 79():239-252. PubMed ID: 30149211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications.
    Dash BC; Mandal BB; Kundu SC
    J Biotechnol; 2009 Dec; 144(4):321-9. PubMed ID: 19808068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application.
    Wang P; He H; Cai R; Tao G; Yang M; Zuo H; Umar A; Wang Y
    Carbohydr Polym; 2019 May; 212():403-411. PubMed ID: 30832874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds.
    Chen CS; Zeng F; Xiao X; Wang Z; Li XL; Tan RW; Liu WQ; Zhang YS; She ZD; Li SJ
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33879-33890. PubMed ID: 30204403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound-Healing Biomaterial.
    Lamboni L; Li Y; Liu J; Yang G
    Biomacromolecules; 2016 Sep; 17(9):3076-84. PubMed ID: 27467880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Release of Chitosan and Sericin from the Microspheres-Embedded Wound Dressing for the Prolonged Anti-microbial and Wound Healing Efficacy.
    Aramwit P; Yamdech R; Ampawong S
    AAPS J; 2016 May; 18(3):647-58. PubMed ID: 26935427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of silk sericin based nanofibrous mats for wound dressing applications.
    Gilotra S; Chouhan D; Bhardwaj N; Nandi SK; Mandal BB
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():420-432. PubMed ID: 29853108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J; Shen J; Quan D; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.
    Rakhshaei R; Namazi H
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():456-464. PubMed ID: 28183632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.
    Jiayao Z; Guanshan Z; Jinchi Z; Yuyin C; Yongqiang Z
    Microsc Res Tech; 2017 Mar; 80(3):305-311. PubMed ID: 27859871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk sericin: A versatile material for tissue engineering and drug delivery.
    Lamboni L; Gauthier M; Yang G; Wang Q
    Biotechnol Adv; 2015 Dec; 33(8):1855-67. PubMed ID: 26523781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.