These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23853227)

  • 1. A 4 μW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems.
    Al-Ashmouny KM; Chang SI; Yoon E
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):403-13. PubMed ID: 23853227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-power 32-channel digitally programmable neural recording integrated circuit.
    Wattanapanitch W; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):592-602. PubMed ID: 23852555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.
    Wu CY; Chen WM; Kuo LT
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):107-14. PubMed ID: 23853293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-power programmable neural spike detection channel with embedded calibration and data compression.
    Rodriguez-Perez A; Ruiz-Amaya J; Delgado-Restituto M; Rodriguez-Vazquez Á
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):87-100. PubMed ID: 23852974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-power configurable neural recording system for epileptic seizure detection.
    Qian C; Shi J; Parramon J; Sánchez-Sinencio E
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):499-512. PubMed ID: 23893209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression.
    Kim SJ; Han SH; Cha JH; Liu L; Yao L; Gao Y; Je M
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):1-14. PubMed ID: 30418918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 0.09 μW low power front-end biopotential amplifier for biosignal recording.
    Tseng Y; Ho Y; Kao S; Su C
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):508-16. PubMed ID: 23853237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.
    Mora Lopez C; Prodanov D; Braeken D; Gligorijevic I; Eberle W; Bartic C; Puers R; Gielen G
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):101-10. PubMed ID: 23852975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-differential recording and AGC using microcontrolled variable gain ASIC.
    Rieger R; Deng SL
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):47-54. PubMed ID: 22929480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massively-parallel neuromonitoring and neurostimulation rodent headset with nanotextured flexible microelectrodes.
    Bagheri A; Gabran SR; Salam MT; Perez Velazquez JL; Mansour RR; Salama MM; Genov R
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):601-9. PubMed ID: 24144667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications.
    Patterson WR; Song YK; Bull CW; Ozden I; Deangellis AP; Lay C; McKay JL; Nurmikko AV; Donoghue JD; Connors BW
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1845-53. PubMed ID: 15490832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power-Efficient LFP-Adaptive Dynamic Zoom-and-Track Incremental ΔΣ Front-End for Dual-Band Subcortical Recordings.
    Oh S; Song H; Slager N; Ruiz JRL; Park SY; Yoon E
    IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):741-753. PubMed ID: 37490369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B; Yao J; Han S; Xie X; Li G; Wang Z
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
    Zhang F; Holleman J; Otis BP
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An energy-efficient micropower neural recording amplifier.
    Wattanapanitch W; Fee M; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):136-47. PubMed ID: 23851668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems.
    Perlin GE; Sodagar AM; Wise KD
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2982-5. PubMed ID: 17946997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
    Angotzi GN; Boi F; Lecomte A; Miele E; Malerba M; Zucca S; Casile A; Berdondini L
    Biosens Bioelectron; 2019 Feb; 126():355-364. PubMed ID: 30466053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 64-channel neuron recording system.
    Lo YK; Liu W; Chen K; Tsai MH; Hsueh FL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2862-5. PubMed ID: 22254938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.