These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23853231)

  • 1. Design constraints for mobile, high-speed fluorescence brain imaging in awake animals.
    Osman A; Park JH; Dickensheets D; Platisa J; Culurciello E; Pieribone VA
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):446-53. PubMed ID: 23853231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice.
    Ferezou I; Bolea S; Petersen CC
    Neuron; 2006 May; 50(4):617-29. PubMed ID: 16701211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging.
    Tsytsarev V; Pope D; Pumbo E; Yablonskii A; Hofmann M
    Neuroimage; 2010 Oct; 53(1):233-8. PubMed ID: 20558304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice.
    Ferezou I; Haiss F; Gentet LJ; Aronoff R; Weber B; Petersen CC
    Neuron; 2007 Dec; 56(5):907-23. PubMed ID: 18054865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating whisker behavior with membrane potential in barrel cortex of awake mice.
    Crochet S; Petersen CC
    Nat Neurosci; 2006 May; 9(5):608-10. PubMed ID: 16617340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head-mountable high speed camera for optical neural recording.
    Park JH; Platisa J; Verhagen JV; Gautam SH; Osman A; Kim D; Pieribone VA; Culurciello E
    J Neurosci Methods; 2011 Oct; 201(2):290-5. PubMed ID: 21763348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex.
    Berger T; Borgdorff A; Crochet S; Neubauer FB; Lefort S; Fauvet B; Ferezou I; Carleton A; Lüscher HR; Petersen CC
    J Neurophysiol; 2007 May; 97(5):3751-62. PubMed ID: 17360827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system.
    Kobayashi T; Masuda H; Kitsumoto C; Haruta M; Motoyama M; Ohta Y; Noda T; Sasagawa K; Tokuda T; Shiosaka S; Ohta J
    Biosens Bioelectron; 2014 Mar; 53():31-6. PubMed ID: 24121224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A miniaturized platform for laser speckle contrast imaging.
    Senarathna J; Murari K; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):437-45. PubMed ID: 23853230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.
    Landers MS; Sullivan RM
    J Neurosci; 1999 Jun; 19(12):5131-7. PubMed ID: 10366646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically Encoded Protein Sensors of Membrane Potential.
    Storace D; Rad MS; Han Z; Jin L; Cohen LB; Hughes T; Baker BJ; Sung U
    Adv Exp Med Biol; 2015; 859():493-509. PubMed ID: 26238066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.
    Bullen A; Patel SS; Saggau P
    Biophys J; 1997 Jul; 73(1):477-91. PubMed ID: 9199810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex.
    Kobayashi T; Motoyama M; Masuda H; Ohta Y; Haruta M; Noda T; Sasagawa K; Tokuda T; Tamura H; Ishikawa Y; Shiosaka S; Ohta J
    Biosens Bioelectron; 2012; 38(1):321-30. PubMed ID: 22784497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeing what the mouse sees with its vibrissae: a matter of behavioral state.
    Curtis JC; Kleinfeld D
    Neuron; 2006 May; 50(4):524-6. PubMed ID: 16701202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic ultrahigh-throughput detection of fluorescent drops.
    Kim M; Pan M; Gai Y; Pang S; Han C; Yang C; Tang SK
    Lab Chip; 2015 Mar; 15(6):1417-23. PubMed ID: 25588522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal mapping of rat whisker barrels with fast scattered light signals.
    Rector DM; Carter KM; Volegov PL; George JS
    Neuroimage; 2005 Jun; 26(2):619-27. PubMed ID: 15907319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals.
    Helmchen F; Fee MS; Tank DW; Denk W
    Neuron; 2001 Sep; 31(6):903-12. PubMed ID: 11580892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.
    Masson A; Pedrazzani M; Benrezzak S; Tchenio P; Preat T; Nutarelli D
    Opt Express; 2014 Jan; 22(2):1243-56. PubMed ID: 24515130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor.
    Ah Lee S; Ou X; Lee JE; Yang C
    Opt Lett; 2013 Jun; 38(11):1817-9. PubMed ID: 23722754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.