BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23853234)

  • 1. New approaches for carbon nanotubes-based biosensors and their application to cell culture monitoring.
    Boero C; Olivo J; De Micheli G; Carrara S
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):479-85. PubMed ID: 23853234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture.
    Boero C; Carrara S; Del Vecchio G; Calzà L; De Micheli G
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):59-67. PubMed ID: 21518668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, development, and validation of an in-situ biosensor array for metabolite monitoring of cell cultures.
    Boero C; Casulli MA; Olivo J; Foglia L; Orso E; Mazza M; Carrara S; De Micheli G
    Biosens Bioelectron; 2014 Nov; 61():251-9. PubMed ID: 24906082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions.
    Zafar MN; Safina G; Ludwig R; Gorton L
    Anal Biochem; 2012 Jun; 425(1):36-42. PubMed ID: 22381371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemical biosensor for 3-hydroxybutyrate detection based on screen-printed electrode modified by coenzyme functionalized carbon nanotubes.
    Khorsand F; Darziani Azizi M; Naeemy A; Larijani B; Omidfar K
    Mol Biol Rep; 2013 Mar; 40(3):2327-34. PubMed ID: 23187739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated glucose biosensor for culture well operation.
    Pemberton RM; Cox T; Tuffin R; Sage I; Drago GA; Biddle N; Griffiths J; Pittson R; Johnson G; Xu J; Jackson SK; Kenna G; Luxton R; Hart JP
    Biosens Bioelectron; 2013 Apr; 42():668-77. PubMed ID: 23265827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes.
    Guan WJ; Li Y; Chen YQ; Zhang XB; Hu GQ
    Biosens Bioelectron; 2005 Sep; 21(3):508-12. PubMed ID: 16076441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully microfabricated carbon nanotube three-electrode system on glass substrate for miniaturized electrochemical biosensors.
    Kim JH; Lee JY; Jin JH; Park CW; Lee CJ; Min NK
    Biomed Microdevices; 2012 Jun; 14(3):613-24. PubMed ID: 22391878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors.
    Carrara S; Shumyantseva VV; Archakov AI; Samorì B
    Biosens Bioelectron; 2008 Sep; 24(1):148-50. PubMed ID: 18455917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction.
    Zhang J; Wang C; Chen S; Yuan D; Zhong X
    Enzyme Microb Technol; 2013 Mar; 52(3):134-40. PubMed ID: 23410923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and functionalized gold nanoparticles.
    Zhang M; Yuan R; Chai Y; Li W; Zhong H; Wang C
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1143-50. PubMed ID: 21720965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes.
    Wang Y; Du J; Li Y; Shan D; Zhou X; Xue Z; Lu X
    Colloids Surf B Biointerfaces; 2012 Feb; 90():62-7. PubMed ID: 22019049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.
    Rawson FJ; Purcell WM; Xu J; Pemberton RM; Fielden PR; Biddle N; Hart JP
    Talanta; 2009 Jan; 77(3):1149-54. PubMed ID: 19064104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode.
    Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q
    Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes.
    Chauhan N; Singh A; Narang J; Dahiya S; Pundir CS
    Analyst; 2012 Nov; 137(21):5113-22. PubMed ID: 22986735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode.
    Topçu Sulak M; Gökdoğan O; Gülce A; Gülce H
    Biosens Bioelectron; 2006 Mar; 21(9):1719-26. PubMed ID: 16198102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide nanotube-modified electrodes for enzyme-biosensor applications.
    Yemini M; Reches M; Gazit E; Rishpon J
    Anal Chem; 2005 Aug; 77(16):5155-9. PubMed ID: 16097753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine.
    Goriushkina TB; Soldatkin AP; Dzyadevych SV
    J Agric Food Chem; 2009 Aug; 57(15):6528-35. PubMed ID: 19610636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications.
    Jeykumari DR; Narayanan SS
    Biosens Bioelectron; 2008 Jun; 23(11):1686-93. PubMed ID: 18343650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes.
    Lee CH; Wang SC; Yuan CJ; Wen MF; Chang KS
    Biosens Bioelectron; 2007 Jan; 22(6):877-84. PubMed ID: 16644200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.