BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23853257)

  • 1. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS.
    Tyndall D; Rae BR; Li DD; Arlt J; Johnston A; Richardson JA; Henderson RK
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):562-70. PubMed ID: 23853257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier.
    Rocca FM; Nedbal J; Tyndall D; Krstajić N; Li DD; Ameer-Beg SM; Henderson RK
    Opt Lett; 2016 Feb; 41(4):673-6. PubMed ID: 26872160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of pile-up in integrated time-correlated single photon counting systems.
    Arlt J; Tyndall D; Rae BR; Li DD; Richardson JA; Henderson RK
    Rev Sci Instrum; 2013 Oct; 84(10):103105. PubMed ID: 24182099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput time-correlated single photon counting.
    Léonard J; Dumas N; Caussé JP; Maillot S; Giannakopoulou N; Barre S; Uhring W
    Lab Chip; 2014 Nov; 14(22):4338-43. PubMed ID: 25178818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy.
    Krstajić N; Levitt J; Poland S; Ameer-Beg S; Henderson R
    Opt Express; 2015 Mar; 23(5):5653-69. PubMed ID: 25836796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Vertically Integrated CMOS Microsystem for Time-Resolved Fluorescence Analysis.
    Rae BR; Jingbin Yang ; McKendry J; Zheng Gong ; Renshaw D; Girkin JM; Erdan Gu ; Dawson MD; Henderson RK
    IEEE Trans Biomed Circuits Syst; 2010 Dec; 4(6):437-44. PubMed ID: 23853381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays.
    Krstajić N; Poland S; Levitt J; Walker R; Erdogan A; Ameer-Beg S; Henderson RK
    Opt Lett; 2015 Sep; 40(18):4305-8. PubMed ID: 26371922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors.
    Xiao D; Zang Z; Sapermsap N; Wang Q; Xie W; Chen Y; Uei Li DD
    Biomed Opt Express; 2021 Jun; 12(6):3450-3462. PubMed ID: 34221671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operation of silicon single photon avalanche diodes at cryogenic temperature.
    Rech I; Labanca I; Armellini G; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Jun; 78(6):063105. PubMed ID: 17614603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-correlated Raman and fluorescence spectroscopy based on a silicon photomultiplier and time-correlated single photon counting technique.
    Zhang C; Zhang L; Yang R; Liang K; Han D
    Appl Spectrosc; 2013 Feb; 67(2):136-40. PubMed ID: 23622431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System.
    Rae BR; Muir KR; Gong Z; McKendry J; Girkin JM; Gu E; Renshaw D; Dawson MD; Henderson RK
    Sensors (Basel); 2009; 9(11):9255-74. PubMed ID: 22291564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon efficiency optimization in time-correlated single photon counting technique for fluorescence lifetime imaging systems.
    Turgeman L; Fixler D
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1571-9. PubMed ID: 23322753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance trade-offs in single-photon avalanche diode miniaturization.
    Finkelstein H; Hsu MJ; Zlatanovic S; Esener S
    Rev Sci Instrum; 2007 Oct; 78(10):103103. PubMed ID: 17979402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: Simple calibration of the counting-rate dependence of the timing shift of single photon avalanche diodes by photon interval analysis.
    Otosu T; Ishii K; Tahara T
    Rev Sci Instrum; 2013 Mar; 84(3):036105. PubMed ID: 23556857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector.
    Gundacker S; Heering A
    Phys Med Biol; 2020 Aug; 65(17):17TR01. PubMed ID: 32109891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Point-of-Care Device for Molecular Diagnosis Based on CMOS SPAD Detectors with Integrated Microfluidics.
    Canals J; Franch N; Alonso O; Vilà A; Diéguez A
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors.
    Nie K; Wang X; Qiao J; Xu J
    Sensors (Basel); 2016 Jan; 16(2):160. PubMed ID: 26828490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing.
    Pietro WJ; Mermut O
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.
    Scarcella C; Tosi A; Villa F; Tisa S; Zappa F
    Rev Sci Instrum; 2013 Dec; 84(12):123112. PubMed ID: 24387425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.