These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23853261)

  • 1. Modeling of the cell-electrode interface noise for microelectrode arrays.
    Guo J; Yuan J; Chan M
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):605-13. PubMed ID: 23853261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays.
    Gunalan K; Warren DJ; Perry JD; Normann RA; Clark GA
    J Neurosci Methods; 2009 Apr; 178(2):263-9. PubMed ID: 19150630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances.
    Johnson MD; Otto KJ; Kipke DR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):160-5. PubMed ID: 16003894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential.
    Moulin C; Glière A; Barbier D; Joucla S; Yvert B; Mailley P; Guillemaud R
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):683-92. PubMed ID: 18270005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanograin microelectrodes for neuroelectronic interfaces.
    Kim R; Hong N; Nam Y
    Biotechnol J; 2013 Feb; 8(2):206-14. PubMed ID: 23071004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations.
    Rocha PR; Schlett P; Kintzel U; Mailänder V; Vandamme LK; Zeck G; Gomes HL; Biscarini F; de Leeuw DM
    Sci Rep; 2016 Oct; 6():34843. PubMed ID: 27708378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance characterization and modeling of electrodes for biomedical applications.
    Franks W; Schenker I; Schmutz P; Hierlemann A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1295-302. PubMed ID: 16041993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-electrode interface noise model for high-density microelectrode arrays.
    Joye N; Schmid A; Leblebici Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3247-50. PubMed ID: 19964290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysics of microchannel-enabled neuron-electrode interfaces.
    Wang L; Riss M; Buitrago JO; Claverol-Tinturé E
    J Neural Eng; 2012 Apr; 9(2):026010. PubMed ID: 22333069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro.
    Song Y; Lin N; Liu C; Jiang H; Xing G; Cai X
    Biosens Bioelectron; 2012; 38(1):416-20. PubMed ID: 22672764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.