These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23853295)

  • 1. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis.
    Williams I; Constandinou T
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):129-39. PubMed ID: 23853295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a fully integrated neurostimulator with inductive power recovery front-end.
    Mounaïm F; Sawan M
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):309-18. PubMed ID: 23853175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Digitally Dynamic Power Supply Technique for 16-Channel 12 V-Tolerant Stimulator Realized in a 0.18- μm 1.8-V/3.3-V Low-Voltage CMOS Process.
    Luo Z; Ker MD; Yang TY; Cheng WH
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1087-1096. PubMed ID: 28727562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 0.04 mm (2) Buck-Boost DC-DC Converter for Biomedical Implants Using Adaptive Gain and Discrete Frequency Scaling Control.
    George L; Gargiulo GD; Lehmann T; Hamilton TJ
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):668-78. PubMed ID: 26600247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.
    Arfin SK; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):1-14. PubMed ID: 23852740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process.
    Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.
    Liu X; Demosthenous A; Vanhoestenberghe A; Jiang D; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):216-27. PubMed ID: 23853144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.
    Hsu WY; Schmid A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):878-888. PubMed ID: 28715337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A charge-metering method for voltage-mode neural stimulation.
    Luan S; Constandinou TG
    J Neurosci Methods; 2014 Mar; 224():39-47. PubMed ID: 24360970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.
    Wu CY; Chen WM; Kuo LT
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):107-14. PubMed ID: 23853293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multichannel High-Frequency Power-Isolated Neural Stimulator With Crosstalk Reduction.
    Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):940-953. PubMed ID: 29993559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sub-mW fully-integrated pulse oximeter front-end.
    Glaros KN; Drakakis EM
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):363-75. PubMed ID: 23853336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power flow control based solely on slow feedback loop for heart pump applications.
    Wang B; Hu AP; Budgett D
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):279-86. PubMed ID: 23853149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-mode highly efficient class-E stimulator controlled by a low-Q class-E power amplifier through duty cycle.
    Chiu HW; Lu CC; Chuang JM; Lin WT; Lin CW; Kao MC; Lin ML
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):243-55. PubMed ID: 23853324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output.
    Fu X; Mai S; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety ensuring retinal prosthesis with precise charge balance and low power consumption.
    Chun H; Yang Y; Lehmann T
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):108-18. PubMed ID: 24681924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel wireless power and data transmission AC to DC converter for an implantable device.
    Liu JY; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.