BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23853679)

  • 1. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis.
    Patel S; Showers D; Vedantam P; Tzeng TR; Qian S; Xuan X
    Biomicrofluidics; 2012 Sep; 6(3):34102. PubMed ID: 23853679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S; Qian S; Xuan X
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joule heating effects on reservoir-based dielectrophoresis.
    Kale A; Patel S; Qian S; Hu G; Xuan X
    Electrophoresis; 2014 Mar; 35(5):721-7. PubMed ID: 24165865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels.
    Zhu J; Xuan X
    Biomicrofluidics; 2011 Jun; 5(2):24111. PubMed ID: 21792385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic Immobilization of Yeast Cells Using CMOS Integrated Microfluidics.
    Matbaechi Ettehad H; Soltani Zarrin P; Hölzel R; Wenger C
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32429098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment.
    Kale A; Patel S; Xuan X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics.
    Matbaechi Ettehad H; Wenger C
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of an Integrated Dielectrophoretic and Magnetophoretic Microfluidic Chip for CTC Isolation.
    Zhao K; Zhao P; Dong J; Wei Y; Chen B; Wang Y; Pan X; Wang J
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.
    Tada S
    Biorheology; 2015; 52(3):211-24. PubMed ID: 26406782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes.
    Sun M; Agarwal P; Zhao S; Zhao Y; Lu X; He X
    Anal Chem; 2016 Aug; 88(16):8264-71. PubMed ID: 27409352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic preconcentration of particles and cells in microfluidic reservoirs.
    Harrison H; Lu X; Patel S; Thomas C; Todd A; Johnson M; Raval Y; Tzeng TR; Song Y; Wang J; Li D; Xuan X
    Analyst; 2015 Apr; 140(8):2869-75. PubMed ID: 25742630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon-Electrodes.
    Yildizhan Y; Erdem N; Islam M; Martinez-Duarte R; Elitas M
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29165346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP).
    Shafiee H; Sano MB; Henslee EA; Caldwell JL; Davalos RV
    Lab Chip; 2010 Feb; 10(4):438-45. PubMed ID: 20126683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of a microfluidic device employing dielectrophoresis for liquid biopsy.
    Alnaimat F; Mathew B; Alazzam A
    Med Eng Phys; 2020 Jul; 81():130-135. PubMed ID: 32507676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using dielectrophoretic spectra to identify and separate viable yeast cells.
    Bunthawin S; Srichan P; Jaruwongrungsee K; Ritchie RJ
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7647-7655. PubMed ID: 37815615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.