These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 23855433)
1. Individual and combined effects of CaCl₂ and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. Wang L; Ma L; Xi H; Duan W; Wang J; Li S J Agric Food Chem; 2013 Jul; 61(29):7135-41. PubMed ID: 23855433 [TBL] [Abstract][Full Text] [Related]
2. Resveratrols in grape berry skins and leaves in vitis germplasm. Wang L; Xu M; Liu C; Wang J; Xi H; Wu B; Loescher W; Duan W; Fan P; Li S PLoS One; 2013; 8(4):e61642. PubMed ID: 23637874 [TBL] [Abstract][Full Text] [Related]
3. Substrates and enzyme activities related to biotransformation of resveratrol from phenylalanine by Alternaria sp. MG1. Zhang J; Shi J; Liu Y Appl Microbiol Biotechnol; 2013 Dec; 97(23):9941-54. PubMed ID: 24068334 [TBL] [Abstract][Full Text] [Related]
4. Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in 'Beihong' (V. vinifera×V. amurensis). Wang JF; Ma L; Xi HF; Wang LJ; Li SH Food Chem; 2015 Feb; 168():430-8. PubMed ID: 25172731 [TBL] [Abstract][Full Text] [Related]
5. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. Versari A; Parpinello GP; Tornielli GB; Ferrarini R; Giulivo C J Agric Food Chem; 2001 Nov; 49(11):5531-6. PubMed ID: 11714355 [TBL] [Abstract][Full Text] [Related]
6. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Wang W; Tang K; Yang HR; Wen PF; Zhang P; Wang HL; Huang WD Plant Physiol Biochem; 2010; 48(2-3):142-52. PubMed ID: 20060310 [TBL] [Abstract][Full Text] [Related]
7. Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. Shumakova OA; Manyakhin AY; Kiselev KV Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1427-36. PubMed ID: 21938424 [TBL] [Abstract][Full Text] [Related]
8. Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Dubrovina AS; Manyakhin AY; Zhuravlev YN; Kiselev KV Appl Microbiol Biotechnol; 2010 Oct; 88(3):727-36. PubMed ID: 20683716 [TBL] [Abstract][Full Text] [Related]
9. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin. Aoki T; Aoki Y; Ishiai S; Otoguro M; Suzuki S Pest Manag Sci; 2017 Jan; 73(1):174-180. PubMed ID: 27038426 [TBL] [Abstract][Full Text] [Related]
10. Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars. Fang L; Hou Y; Wang L; Xin H; Wang N; Li S Plant Cell Rep; 2014 Oct; 33(10):1629-40. PubMed ID: 24948530 [TBL] [Abstract][Full Text] [Related]
11. Ripening and genotype control stilbene accumulation in healthy grapes. Gatto P; Vrhovsek U; Muth J; Segala C; Romualdi C; Fontana P; Pruefer D; Stefanini M; Moser C; Mattivi F; Velasco R J Agric Food Chem; 2008 Dec; 56(24):11773-85. PubMed ID: 19032022 [TBL] [Abstract][Full Text] [Related]
12. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. 'Superior' white table grapes. González-Barrio R; Beltrán D; Cantos E; Gil MI; Espín JC; Tomás-Barberán FA J Agric Food Chem; 2006 Jun; 54(12):4222-8. PubMed ID: 16756350 [TBL] [Abstract][Full Text] [Related]
13. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level. Li X; Wu B; Wang L; Li S J Agric Food Chem; 2006 Nov; 54(23):8804-11. PubMed ID: 17090126 [TBL] [Abstract][Full Text] [Related]
14. Ultraviolet-C and induced stilbenes control ochratoxigenic Aspergillus in grapes. Selma MV; Freitas PM; Almela L; González-Barrio R; Espín JC; Suslow T; Tomás-Barberán F; Gil MI J Agric Food Chem; 2008 Nov; 56(21):9990-6. PubMed ID: 18841974 [TBL] [Abstract][Full Text] [Related]
16. Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. Del-Castillo-Alonso MÁ; Diago MP; Monforte L; Tardaguila J; Martínez-Abaigar J; Núñez-Olivera E J Sci Food Agric; 2015 Jan; 95(2):409-16. PubMed ID: 24820651 [TBL] [Abstract][Full Text] [Related]
17. Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Crupi P; Pichierri A; Basile T; Antonacci D Food Chem; 2013 Nov; 141(2):802-8. PubMed ID: 23790850 [TBL] [Abstract][Full Text] [Related]
18. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Xu D; Deng Y; Xi P; Yu G; Wang Q; Zeng Q; Jiang Z; Gao L Food Chem; 2019 Jul; 286():226-233. PubMed ID: 30827600 [TBL] [Abstract][Full Text] [Related]
19. Phenylalanine ammonia lyase functions as a switch directly controlling the accumulation of calycosin and calycosin-7-O-beta-D-glucoside in Astragalus membranaceus var. mongholicus plants. Pan H; Wang Y; Zhang Y; Zhou T; Fang C; Nan P; Wang X; Li X; Wei Y; Chen J J Exp Bot; 2008; 59(11):3027-37. PubMed ID: 18583351 [TBL] [Abstract][Full Text] [Related]
20. Postharvest physio-pathological disorders in table grapes as affected by UV-C light. D'Hallewin G; Ladu G; Pani G; Dore A; Molinu MG; Venditti T Commun Agric Appl Biol Sci; 2012; 77(4):515-25. PubMed ID: 23885419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]