These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23855458)

  • 1. Principal component structuring of the non-REM Sleep EEG spectrum in older adults yields age-related changes in the sleep and wake drives.
    Putilov AA; Münch MY; Cajochen C
    Curr Aging Sci; 2013 Dec; 6(3):280-93. PubMed ID: 23855458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for age-associated disinhibition of the wake drive provided by scoring principal components of the resting EEG spectrum in sleep-provoking conditions.
    Putilov AA; Donskaya OG
    Chronobiol Int; 2016; 33(8):995-1008. PubMed ID: 27253971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principal components of electroencephalographic spectrum as markers of opponent processes underlying ultradian sleep cycles.
    Putilov AA
    Chronobiol Int; 2011 May; 28(4):287-99. PubMed ID: 21539420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of sleepiness through principal component analysis of the electroencephalographic spectrum.
    Putilov AA; Donskaya OG; Verevkin EG
    Chronobiol Int; 2012 May; 29(4):509-22. PubMed ID: 22480345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Changes in Scores on Principal Components of the EEG Spectrum do not Occur in the Course of "Drowsy" Sleep of Varying Length.
    Putilov AA
    Clin EEG Neurosci; 2015 Apr; 46(2):147-52. PubMed ID: 24699439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yin and yang of two opponent processes of sleep-wake regulation: Sex-associated differences in the spectral EEG markers of the drives for sleep and wake.
    Dorokhov VB; Puchkova AN; Shumov DE; Gandina EO; Taranov AO; Ligun NV; Sveshnikov DS; Yakunina EB; Mankaeva OV; Putilov AA
    Chronobiol Int; 2024 Jul; 41(7):1046-1057. PubMed ID: 39007875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When does this cortical area drop off? Principal component structuring of the EEG spectrum yields yes-or-no criteria of local sleep onset.
    Putilov AA
    Physiol Behav; 2014 Jun; 133():115-21. PubMed ID: 24878318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in the circadian and homeostatic regulation of human sleep.
    Cajochen C; Münch M; Knoblauch V; Blatter K; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):461-74. PubMed ID: 16687319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking stages of non-rapid eye movement sleep to the spectral EEG markers of the drives for sleep and wake.
    Dorokhov VB; Taranov AO; Sakharov DS; Gruzdeva SS; Tkachenko ON; Sveshnikov DS; Bakaeva ZB; Putilov AA
    J Neurophysiol; 2021 Dec; 126(6):1991-2000. PubMed ID: 34817290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG sleep spectra in older adults across all circadian phases during NREM sleep.
    Münch M; Silva EJ; Ronda JM; Czeisler CA; Duffy JF
    Sleep; 2010 Mar; 33(3):389-401. PubMed ID: 20337198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases.
    Dijk DJ; Duffy JF; Czeisler CA
    Sleep; 2001 Aug; 24(5):565-77. PubMed ID: 11480654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of an individual's ability to overcome desire to fall asleep with a higher anterior-posterior gradient in electroencephalographic indexes of sleep pressure.
    Putilov AA; Donskaya OG
    Int J Psychophysiol; 2017 Mar; 113():23-28. PubMed ID: 28077269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.
    Spiess M; Bernardi G; Kurth S; Ringli M; Wehrle FM; Jenni OG; Huber R; Siclari F
    Neuroimage; 2018 Sep; 178():23-35. PubMed ID: 29758338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Young women with major depression live on higher homeostatic sleep pressure than healthy controls.
    Frey S; Birchler-Pedross A; Hofstetter M; Brunner P; Götz T; Münch M; Blatter K; Knoblauch V; Wirz-Justice A; Cajochen C
    Chronobiol Int; 2012 Apr; 29(3):278-94. PubMed ID: 22390241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep.
    Dijk DJ; Duffy JF; Czeisler CA
    Chronobiol Int; 2000 May; 17(3):285-311. PubMed ID: 10841208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging of core and optional sleep.
    Wauquier A; van Sweden B
    Biol Psychiatry; 1992 May; 31(9):866-80. PubMed ID: 1637928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian and wake-dependent influences on subjective sleepiness, cognitive throughput, and reaction time performance in older and young adults.
    Silva EJ; Wang W; Ronda JM; Wyatt JK; Duffy JF
    Sleep; 2010 Apr; 33(4):481-90. PubMed ID: 20394317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related attenuation of the evening circadian arousal signal in humans.
    Münch M; Knoblauch V; Blatter K; Schröder C; Schnitzler C; Kräuchi K; Wirz-Justice A; Cajochen C
    Neurobiol Aging; 2005 Oct; 26(9):1307-19. PubMed ID: 16182904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics.
    Dijk DJ; Duffy JF
    Ann Med; 1999 Apr; 31(2):130-40. PubMed ID: 10344586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual information measures applied to EEG signals for sleepiness characterization.
    Melia U; Guaita M; Vallverdú M; Embid C; Vilaseca I; Salamero M; Santamaria J
    Med Eng Phys; 2015 Mar; 37(3):297-308. PubMed ID: 25638417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.