BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2385564)

  • 1. Studies on cellular adhesion of Xenopus laevis melanophores: pigment pattern formation and alteration in vivo by endogenous galactoside-binding lectin or its sugar hapten inhibitor.
    Frunchak YN; Milos NC
    Pigment Cell Res; 1990; 3(2):101-14. PubMed ID: 2385564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin.
    Milos NC; Wilson HC; Ma YL; Mohanraj TM; Frunchak YN
    Pigment Cell Res; 1987; 1(3):188-96. PubMed ID: 3508276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective development of the craniofacial/digestive complex of Xenopus laevis after treatment with endogenous galactoside-binding lectin or its hapten inhibitor thiodigalactoside.
    Varma PV; Frunchak YN; Evanson JE; Milos NC
    J Craniofac Genet Dev Biol; 1994; 14(3):177-91. PubMed ID: 7852546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of endogenous galactoside-binding lectin of Xenopus laevis in pattern formation of Xenopus neurites in vitro.
    Milos NC; Ma YL; Frunchak YN
    Cell Differ Dev; 1989 Dec; 28(3):203-9. PubMed ID: 2620261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of heart development in Xenopus laevis by galactoside-binding lectin or its sugar hapten inhibitor.
    Frunchak YN; Martha GN; McFadden KD; Milos NC
    Anat Embryol (Berl); 1993 Mar; 187(3):299-316. PubMed ID: 8470830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of endogenous galactoside-binding lectin during morphogenesis of Xenopus laevis.
    Milos NC; Ma YL; Varma PV; Bering MP; Mohamed Z; Pilarski LM; Frunchak YN
    Anat Embryol (Berl); 1990; 182(4):319-27. PubMed ID: 2123609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis.
    Milos NC; Wilson HC
    J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique.
    Tucker RP; Erickson CA
    J Exp Zool; 1986 Nov; 240(2):173-82. PubMed ID: 2432154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae.
    Macmillan GJ
    J Embryol Exp Morphol; 1976 Jun; 35(3):463-84. PubMed ID: 947992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of putative melatonin receptor antagonists on melatonin-induced pigment aggregation in isolated Xenopus laevis melanophores.
    Sugden D
    Eur J Pharmacol; 1992 Mar; 213(3):405-8. PubMed ID: 1319920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor.
    Fukuzawa T; Bagnara JT
    Pigment Cell Res; 1989; 2(3):171-81. PubMed ID: 2549532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered impedance during pigment aggregation in Xenopus laevis melanophores.
    Immerstrand C; Jager EW; Magnusson KE; Sundqvist T; Lundström I; Inganäs O; Peterson KH
    Med Biol Eng Comput; 2003 May; 41(3):357-64. PubMed ID: 12803303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.
    Aspengren S; Hedberg D; Wallin M
    Pigment Cell Res; 2006 Apr; 19(2):136-45. PubMed ID: 16524429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone.
    van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG
    Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae).
    Parichy DM
    Dev Biol; 1996 May; 175(2):283-300. PubMed ID: 8626033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2015 Sep; 361(3):733-44. PubMed ID: 25715760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of adhesion among cells of the early chick blastoderm: role of the beta-D-galactoside-binding lectin in the adhesion of extraembryonic endoderm cells.
    Milos N; Zalik SE
    Differentiation; 1982 May; 21(3):175-82. PubMed ID: 7106452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanophore differentiation in Xenopus laevis, with special reference to dorsoventral pigment pattern formation.
    Ohsugi K; Ide H
    J Embryol Exp Morphol; 1983 Jun; 75():141-50. PubMed ID: 6411851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ventrally localized inhibitor of melanization in Xenopus laevis skin.
    Fukuzawa T; Ide H
    Dev Biol; 1988 Sep; 129(1):25-36. PubMed ID: 3410161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.