These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23855666)

  • 1. Structural-functional integrity of hypothetical proteins identical to ADPribosylation superfamily upon point mutations.
    Chellapandi P
    Protein Pept Lett; 2014; 21(8):722-35. PubMed ID: 23855666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.
    Prisilla A; Prathiviraj R; Sasikala R; Chellapandi P
    Infect Genet Evol; 2016 Oct; 44():17-27. PubMed ID: 27320793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic approach for inferring the origin and functional evolution of bacterial ADP-ribosylation superfamily.
    Chellapandi P; Sakthishree S; Bharathi M
    Protein Pept Lett; 2013 Sep; 20(9):1054-65. PubMed ID: 23578140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation.
    Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B
    Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction Mechanism of Mono-ADP-Ribosyltransferase Based on Structures of the Complex of Enzyme and Substrate Protein.
    Tsuge H; Tsurumura T
    Curr Top Microbiol Immunol; 2015; 384():69-87. PubMed ID: 24990621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine.
    Prathiviraj R; Prisilla A; Chellapandi P
    J Biomol Struct Dyn; 2016 Jun; 34(6):1317-29. PubMed ID: 26239365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural variability of C3larvin toxin. Intrinsic dynamics of the α/β fold of the C3-like group of mono-ADP-ribosyltransferase toxins.
    Lugo MR; Ravulapalli R; Dutta D; Merrill AR
    J Biomol Struct Dyn; 2016 Dec; 34(12):2537-2560. PubMed ID: 26610041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of mouse ADP-ribosylhydrolase 3 (mARH3).
    Mueller-Dieckmann C; Kernstock S; Mueller-Dieckmann J; Weiss MS; Koch-Nolte F
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Mar; 64(Pt 3):156-62. PubMed ID: 18323597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin.
    Prisilla A; Prathiviraj R; Chellapandi P
    J Mol Evol; 2017 Apr; 84(4):174-186. PubMed ID: 28382496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization.
    Wilde C; Vogelsgesang M; Aktories K
    Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat.
    Ritter H; Koch-Nolte F; Marquez VE; Schulz GE
    Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells.
    Stilla A; Di Paola S; Dani N; Krebs C; Arrizza A; Corda D; Haag F; Koch-Nolte F; Di Girolamo M
    Eur J Cell Biol; 2011 Aug; 90(8):665-77. PubMed ID: 21616557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the catalytic signature of Scabin toxin, a DNA-targeting ADP-ribosyltransferase.
    Lyons B; Lugo MR; Carlin S; Lidster T; Merrill AR
    Biochem J; 2018 Jan; 475(1):225-245. PubMed ID: 29208763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases.
    Okazaki IJ; Zolkiewska A; Nightingale MS; Moss J
    Biochemistry; 1994 Nov; 33(43):12828-36. PubMed ID: 7947688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative structural analysis of the putative mono-ADP-ribosyltransferases of the ARTD/PARP family.
    Pinto AF; Schüler H
    Curr Top Microbiol Immunol; 2015; 384():153-66. PubMed ID: 25015788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.
    Hottiger MO; Hassa PO; Lüscher B; Schüler H; Koch-Nolte F
    Trends Biochem Sci; 2010 Apr; 35(4):208-19. PubMed ID: 20106667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.