These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 23855666)
1. Structural-functional integrity of hypothetical proteins identical to ADPribosylation superfamily upon point mutations. Chellapandi P Protein Pept Lett; 2014; 21(8):722-35. PubMed ID: 23855666 [TBL] [Abstract][Full Text] [Related]
2. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. Prisilla A; Prathiviraj R; Sasikala R; Chellapandi P Infect Genet Evol; 2016 Oct; 44():17-27. PubMed ID: 27320793 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic approach for inferring the origin and functional evolution of bacterial ADP-ribosylation superfamily. Chellapandi P; Sakthishree S; Bharathi M Protein Pept Lett; 2013 Sep; 20(9):1054-65. PubMed ID: 23578140 [TBL] [Abstract][Full Text] [Related]
4. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833 [TBL] [Abstract][Full Text] [Related]
5. Reaction Mechanism of Mono-ADP-Ribosyltransferase Based on Structures of the Complex of Enzyme and Substrate Protein. Tsuge H; Tsurumura T Curr Top Microbiol Immunol; 2015; 384():69-87. PubMed ID: 24990621 [TBL] [Abstract][Full Text] [Related]
6. Structure-function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine. Prathiviraj R; Prisilla A; Chellapandi P J Biomol Struct Dyn; 2016 Jun; 34(6):1317-29. PubMed ID: 26239365 [TBL] [Abstract][Full Text] [Related]
7. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. de Souza RF; Aravind L Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070 [TBL] [Abstract][Full Text] [Related]
8. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
10. Structural variability of C3larvin toxin. Intrinsic dynamics of the α/β fold of the C3-like group of mono-ADP-ribosyltransferase toxins. Lugo MR; Ravulapalli R; Dutta D; Merrill AR J Biomol Struct Dyn; 2016 Dec; 34(12):2537-2560. PubMed ID: 26610041 [TBL] [Abstract][Full Text] [Related]
11. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities. Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075 [TBL] [Abstract][Full Text] [Related]
19. Comparative structural analysis of the putative mono-ADP-ribosyltransferases of the ARTD/PARP family. Pinto AF; Schüler H Curr Top Microbiol Immunol; 2015; 384():153-66. PubMed ID: 25015788 [TBL] [Abstract][Full Text] [Related]