These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23855673)

  • 1. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data.
    Ohue M; Matsuzaki Y; Uchikoga N; Ishida T; Akiyama Y
    Protein Pept Lett; 2014; 21(8):766-78. PubMed ID: 23855673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions.
    Hayashi T; Matsuzaki Y; Yanagisawa K; Ohue M; Akiyama Y
    BMC Bioinformatics; 2018 May; 19(Suppl 4):62. PubMed ID: 29745830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.
    Ohue M; Shimoda T; Suzuki S; Matsuzaki Y; Ishida T; Akiyama Y
    Bioinformatics; 2014 Nov; 30(22):3281-3. PubMed ID: 25100686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments.
    Matsuzaki Y; Uchikoga N; Ohue M; Shimoda T; Sato T; Ishida T; Akiyama Y
    Source Code Biol Med; 2013 Sep; 8(1):18. PubMed ID: 24004986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis.
    Matsuzaki Y; Ohue M; Uchikoga N; Akiyama Y
    Protein Pept Lett; 2014; 21(8):790-8. PubMed ID: 23855669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein docking with F(2)Dock 2.0 and GB-rerank.
    Chowdhury R; Rasheed M; Keidel D; Moussalem M; Olson A; Sanner M; Bajaj C
    PLoS One; 2013; 8(3):e51307. PubMed ID: 23483883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico screening of protein-protein interactions with all-to-all rigid docking and clustering: an application to pathway analysis.
    Matsuzaki Y; Matsuzaki Y; Sato T; Akiyama Y
    J Bioinform Comput Biol; 2009 Dec; 7(6):991-1012. PubMed ID: 20014475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. F2Dock: fast Fourier protein-protein docking.
    Bajaj C; Chowdhury R; Siddavanahalli V
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):45-58. PubMed ID: 21071796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of pairwise potentials via logistic regression to score protein-protein interactions.
    Tanemura KA; Pei J; Merz KM
    Proteins; 2020 Dec; 88(12):1559-1568. PubMed ID: 32729132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Protein Interactions by Structural Matching: Prediction of PPI Networks and the Effects of Mutations on PPIs that Combines Sequence and Structural Information.
    Tuncbag N; Keskin O; Nussinov R; Gursoy A
    Methods Mol Biol; 2017; 1558():255-270. PubMed ID: 28150242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding site prediction and improved scoring during flexible protein-protein docking with ATTRACT.
    Fiorucci S; Zacharias M
    Proteins; 2010 Nov; 78(15):3131-9. PubMed ID: 20715290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Software and Databases for Protein-Protein Docking.
    Jarończyk M; Abagyan R; Totrov M
    Methods Mol Biol; 2024; 2780():129-138. PubMed ID: 38987467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein docking using region-based 3D Zernike descriptors.
    Venkatraman V; Yang YD; Sael L; Kihara D
    BMC Bioinformatics; 2009 Dec; 10():407. PubMed ID: 20003235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5.
    Wiehe K; Pierce B; Mintseris J; Tong WW; Anderson R; Chen R; Weng Z
    Proteins; 2005 Aug; 60(2):207-13. PubMed ID: 15981263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEGADOCK-on-Colab: an easy-to-use protein-protein docking tool on Google Colaboratory.
    Ohue M
    BMC Res Notes; 2023 Sep; 16(1):229. PubMed ID: 37737185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaching the CAPRI challenge with an efficient geometry-based docking.
    Inbar Y; Schneidman-Duhovny D; Halperin I; Oron A; Nussinov R; Wolfson HJ
    Proteins; 2005 Aug; 60(2):217-23. PubMed ID: 15981251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Multiple Protein Docking to Protein-Protein Docking at Interactome Level.
    Gabrani R; Jain P; Sharma S; Ghildiyal R; Prakash V
    Methods Mol Biol; 2024; 2780():69-89. PubMed ID: 38987464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushing the accuracy limit of shape complementarity for protein-protein docking.
    Yan Y; Huang SY
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):696. PubMed ID: 31874620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.