These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23856229)
1. Efficient hydrophobization and solvent microextraction for determination of trace nano-sized silver and titanium dioxide in natural waters. Majedi SM; Kelly BC; Lee HK Anal Chim Acta; 2013 Jul; 789():47-57. PubMed ID: 23856229 [TBL] [Abstract][Full Text] [Related]
2. Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Majedi SM; Lee HK; Kelly BC Anal Chem; 2012 Aug; 84(15):6546-52. PubMed ID: 22746396 [TBL] [Abstract][Full Text] [Related]
3. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system. Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277 [TBL] [Abstract][Full Text] [Related]
4. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related]
5. Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2. Umadevi M; Jegatha Christy A Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():80-5. PubMed ID: 23608130 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters. Majedi SM; Kelly BC; Lee HK Anal Chim Acta; 2014 Mar; 814():39-48. PubMed ID: 24528842 [TBL] [Abstract][Full Text] [Related]
7. Surface modified silver selinide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase microextraction coupled with MALDI mass spectrometry. Kailasa SK; Wu HF Talanta; 2010 Dec; 83(2):527-34. PubMed ID: 21111169 [TBL] [Abstract][Full Text] [Related]
8. Optimization of dispersive liquid-liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Sereshti H; Khojeh V; Samadi S Talanta; 2011 Jan; 83(3):885-90. PubMed ID: 21147333 [TBL] [Abstract][Full Text] [Related]
9. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Giakisikli G; Anthemidis AN Anal Chim Acta; 2013 Jul; 789():1-16. PubMed ID: 23856225 [TBL] [Abstract][Full Text] [Related]
10. Phosphoric acid functionalized magnetic sorbents for selective enrichment of TiO Wang Y; Chen B; Wang B; He M; Hu B Sci Total Environ; 2020 Feb; 703():135464. PubMed ID: 31753505 [TBL] [Abstract][Full Text] [Related]
11. Detection of engineered silver nanoparticle contamination in pears. Zhang Z; Kong F; Vardhanabhuti B; Mustapha A; Lin M J Agric Food Chem; 2012 Oct; 60(43):10762-7. PubMed ID: 23082953 [TBL] [Abstract][Full Text] [Related]
13. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES. Sereshti H; Heravi YE; Samadi S Talanta; 2012 Aug; 97():235-41. PubMed ID: 22841073 [TBL] [Abstract][Full Text] [Related]
14. Supramolecular solvent-based extraction coupled with vortex-mixing for determination of palladium and silver in water samples by flame atomic absorption spectrometry. Meng L; Cheng J; Yang Y Water Sci Technol; 2014; 69(3):580-6. PubMed ID: 24552731 [TBL] [Abstract][Full Text] [Related]
16. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201 [TBL] [Abstract][Full Text] [Related]
17. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. Hsiao IL; Bierkandt FS; Reichardt P; Luch A; Huang YJ; Jakubowski N; Tentschert J; Haase A J Nanobiotechnology; 2016 Jun; 14(1):50. PubMed ID: 27334629 [TBL] [Abstract][Full Text] [Related]
18. Titanium dioxide nanoparticles assessment in seaweeds by single particle inductively coupled plasma - Mass spectrometry. López-Mayán JJ; Del-Ángel-Monroy S; Peña-Vázquez E; Barciela-Alonso MC; Bermejo-Barrera P; Moreda-Piñeiro A Talanta; 2022 Jan; 236():122856. PubMed ID: 34635240 [TBL] [Abstract][Full Text] [Related]
19. Low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the fast determination of phthalate esters in bottled water. Zhang Y; Lee HK J Chromatogr A; 2013 Jan; 1274():28-35. PubMed ID: 23290358 [TBL] [Abstract][Full Text] [Related]
20. Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Jaeger A; Weiss DG; Jonas L; Kriehuber R Toxicology; 2012 Jun; 296(1-3):27-36. PubMed ID: 22449567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]