BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23856606)

  • 1. Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.
    Wu X; Wang H; Bai L; Yu Y; Sun Z; Yan Y; Zhou J
    J Proteomics; 2013 Oct; 91():136-50. PubMed ID: 23856606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus.
    Wu X; Wang S; Yu Y; Zhang J; Sun Z; Yan Y; Zhou J
    Proteomics; 2013 Nov; 13(22):3309-26. PubMed ID: 24115376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial antiviral signaling adaptor mediated apoptosis in H3N2 swine influenza virus infection is inhibited by viral protein NS1 in vitro.
    Zhang J; Miao J; Hou J; Lu C
    Vet Immunol Immunopathol; 2015 May; 165(1-2):34-44. PubMed ID: 25800220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential mitochondrial proteomic analysis of A549 cells infected with avian influenza virus subtypes H5 and H9.
    Yang Y; Zhang Y; Yang C; Fang F; Wang Y; Chang H; Chen Z; Chen P
    Virol J; 2021 Feb; 18(1):39. PubMed ID: 33602268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages.
    Zhang J; Miao J; Hou J; Lu C
    Virol J; 2015 Apr; 12():61. PubMed ID: 26021751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.
    Deventhiran J; Kumar SR; Raghunath S; Leroith T; Elankumaran S
    J Virol; 2016 Jan; 90(1):222-31. PubMed ID: 26468540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Swine influenza virus: evolution mechanism and epidemic characterization--a review].
    Qi X; Lu C
    Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1138-45. PubMed ID: 20030049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis at the subcellular level for host targets against influenza A virus (H1N1).
    Zhao H; Yang J; Li K; Ding X; Lin R; Ma Y; Liu J; Zhong Z; Qian X; Bo X; Zhou Z; Wang S
    Antiviral Res; 2013 Dec; 100(3):673-87. PubMed ID: 24161511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages.
    Ohman T; Rintahaka J; Kalkkinen N; Matikainen S; Nyman TA
    J Immunol; 2009 May; 182(9):5682-92. PubMed ID: 19380815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characterization of M2 gene of H3N2 subtype swine influenza virus].
    Wang X; Chen P; Shen Y; Qiu Y; Deng X; Shi Z; Peng L; Luo J; Liu C; Ma Z
    Sheng Wu Gong Cheng Xue Bao; 2010 Jan; 26(1):16-21. PubMed ID: 20353087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis of microRNA-mRNA expression in A549 cells infected with influenza A viruses (IAVs) from different host species.
    Gao J; Gao L; Li R; Lai Z; Zhang Z; Fan X
    Virus Res; 2019 Apr; 263():34-46. PubMed ID: 30605755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.
    Vester D; Rapp E; Gade D; Genzel Y; Reichl U
    Proteomics; 2009 Jun; 9(12):3316-27. PubMed ID: 19504497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of influenza A virus PA protein-associated cellular proteins discloses its impact on mitochondrial function.
    Wu CC; Tam EH; Shih YY; Lin YR; Hsueh PC; Shen HY; Woung CH; Wang LT; Tsai JC; Lin SJ; Chang CR; Ke PY; Kuo RL
    Virus Res; 2024 Jul; 345():199387. PubMed ID: 38719025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swine influenza viruses and pandemic H1N1-2009 infection in pigs, Myanmar.
    Mon PP; Thurain K; Janetanakit T; Nasamran C; Bunpapong N; Aye AM; San YY; Tun TN; Amonsin A
    Transbound Emerg Dis; 2020 Nov; 67(6):2653-2666. PubMed ID: 32385913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Competitive Endogenous RNA (ceRNA) Regulation in Porcine Alveolar Macrophages (3D4/21) Infected by Swine Influenza Virus (H1N1 and H3N2).
    Dai CH; Gao ZC; Cheng JH; Yang L; Wu ZC; Wu SL; Bao WB
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Expression Profiles of Long Noncoding RNAs and mRNAs in A549 Cells Infected with H3N2 Swine Influenza Virus by RNA Sequencing.
    Zhang Y; Yu T; Ding Y; Li Y; Lei J; Hu B; Zhou J
    Virol Sin; 2020 Apr; 35(2):171-180. PubMed ID: 31777011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the intrinsic mitochondrial apoptotic pathway in swine influenza virus-mediated cell death.
    Choi YK; Kim TK; Kim CJ; Lee JS; Oh SY; Joo HS; Foster DN; Hong KC; You S; Kim H
    Exp Mol Med; 2006 Feb; 38(1):11-7. PubMed ID: 16520548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.
    Xu J; Yang D; Huang D; Xu J; Liu S; Lin H; Zhu H; Liu B; Lu C
    Arch Virol; 2013 Mar; 158(3):629-37. PubMed ID: 23135159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication.
    Cheng J; Tao J; Li B; Shi Y; Liu H
    Virol J; 2022 Jun; 19(1):104. PubMed ID: 35715835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.
    Kuo SM; Chen CJ; Chang SC; Liu TJ; Chen YH; Huang SY; Shih SR
    mBio; 2017 Jun; 8(3):. PubMed ID: 28611246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.