These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23856647)

  • 1. On boundary stimulation and optimal boundary control of the bidomain equations.
    Chamakuri N; Kunisch K; Plank G
    Math Biosci; 2013 Oct; 245(2):206-15. PubMed ID: 23856647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function.
    Skouibine K; Krassowska W
    Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.
    Chamakuri N; Kunisch K; Plank G
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02742. PubMed ID: 26249168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate solution to the bidomain equations for defibrillation problems.
    Patel SG; Roth BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021908. PubMed ID: 15783353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of spiral waves in cardiac tissue by multiple electrical shocks.
    Panfilov AV; Müller SC; Zykov VS; Keener JP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4644-7. PubMed ID: 11088273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations.
    Trayanova N; Plank G; Rodríguez B
    Heart Rhythm; 2006 Oct; 3(10):1232-5. PubMed ID: 17018358
    [No Abstract]   [Full Text] [Related]  

  • 7. A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium.
    Skouibine K; Trayanova N; Moore P
    Math Biosci; 2000 Jul; 166(1):85-100. PubMed ID: 10882801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal control approach to termination of re-entry waves in cardiac electrophysiology.
    Nagaiah C; Kunisch K; Plank G
    J Math Biol; 2013 Aug; 67(2):359-88. PubMed ID: 22684847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries.
    Biasi N; Seghetti P; Mercati M; Tognetti A
    PLoS One; 2023; 18(6):e0286577. PubMed ID: 37294777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physical approach to remove anatomical reentries: a bidomain study.
    Takagi S; Pumir A; Pazó D; Efimov I; Nikolski V; Krinsky V
    J Theor Biol; 2004 Oct; 230(4):489-97. PubMed ID: 15363671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology.
    Whiteley JP
    Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual electrode effects in defibrillation.
    Trayanova N; Skouibine K; Moore P
    Prog Biophys Mol Biol; 1998; 69(2-3):387-403. PubMed ID: 9785947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac electrophysiological experiments in numero, Part III: Simulation of arrhythmias and pacing.
    Malik M; Camm AJ
    Pacing Clin Electrophysiol; 1991 Dec; 14(12):2167-86. PubMed ID: 1723199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of refractoriness in a model of cardiac defibrillation.
    Trayanova NA; Aguel F; Skouibine K
    Pac Symp Biocomput; 1999; ():240-51. PubMed ID: 10380201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and simulation of hypothermia effects on cardiac electrical dynamics.
    Belhamadia Y; Grenier J
    PLoS One; 2019; 14(5):e0216058. PubMed ID: 31050666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A possibility of significant lowering the defibrillation current by determining the right time for application of a defibrillating pulse. A mathematical model].
    Pertsov AM; Biktashev VN; Ermakova EA; Krinskiĭ VI
    Biofizika; 1990; 35(3):500-3. PubMed ID: 2207196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unconditionally stable numerical method for the Luo-Rudy 1 model used in simulations of defibrillation.
    Hanslien M; Sundnes J; Tveito A
    Math Biosci; 2007 Aug; 208(2):375-92. PubMed ID: 17306311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.