BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 238567)

  • 1. The magnitude of electrostatic interactions in inhibitor binding and during catalysis by ribonuclease A.
    Flogel M; Albert A; Biltonen R
    Biochemistry; 1975 Jun; 14(12):2616-21. PubMed ID: 238567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pH dependence of the thermodynamics of the interaction of 3'-cytidine monophosphate with ribonuclease A.
    Flogel M; Biltonen RL
    Biochemistry; 1975 Jun; 14(12):2610-5. PubMed ID: 238566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric and potentiometric characterization of the ionization behavior of ribonuclease A and its complex with 3'-cytosine monophosphate.
    Flogel M; Biltonen RL
    Biochemistry; 1975 Jun; 14(12):2603-9. PubMed ID: 238565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric studies of protein--inhibitor interaction. I. Binding of 3'-cytidine monophosphate to ribonuclease A at pH 5.5.
    Bolen DW; Flögel M; Biltonen R
    Biochemistry; 1971 Oct; 10(22):4136-40. PubMed ID: 5161033
    [No Abstract]   [Full Text] [Related]  

  • 5. Energetics of ribonuclease A catalysis. 3. Temperature dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate.
    Eftink MR; Biltonen RL
    Biochemistry; 1983 Oct; 22(22):5140-50. PubMed ID: 6317015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of ribonuclease A catalysis. 1. pH, ionic strength, and solvent isotope dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate.
    Eftink MR; Biltonen RL
    Biochemistry; 1983 Oct; 22(22):5123-34. PubMed ID: 6317013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental assignment of the structure of the transition state for the association of barnase and barstar.
    Frisch C; Fersht AR; Schreiber G
    J Mol Biol; 2001 Apr; 308(1):69-77. PubMed ID: 11302708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of ribonuclease-catalysed kinetics by a micro-calorimetric method.
    Tribout M; Paredes S; Léonis J
    Biochem J; 1976 Jan; 153(1):89-91. PubMed ID: 1259718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the allosteric interactions of ribonuclease and its ligands.
    Walker EJ; Ralston GB; Darvey IG
    Biochem J; 1978 Jul; 173(1):1-4. PubMed ID: 28730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermodynamics of nucleotide binding to proteins.
    Beaudette NV; Langerman N
    CRC Crit Rev Biochem; 1980; 9(2):145-70. PubMed ID: 6108194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calorimetric approach to the study of the interactions of cytidine-3'-phosphate with bovine seminal ribonuclease.
    Ambrosino R; Barone G; Castronuovo G; Cultrera O; Di Donato A; Elia V
    Biopolymers; 1989 Aug; 28(8):1403-11. PubMed ID: 2752098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of pH and ionic strength on cytochrome c oxidase steady-state kinetics reveal a catalytic and a non-catalytic interaction domain for cytochrome c.
    Sinjorgo KM; Steinebach OM; Dekker HL; Muijsers AO
    Biochim Biophys Acta; 1986 Jun; 850(1):108-15. PubMed ID: 3011088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shift in nucleotide conformational equilibrium contributes to increased rate of catalysis of GpAp versus GpA in barnase.
    Giraldo J; De Maria L; Wodak SJ
    Proteins; 2004 Aug; 56(2):261-76. PubMed ID: 15211510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli: binding of cytosine 5'-triphosphate and adenosine 5'-triphosphate.
    Allewell NM; Friedland J; Niekamp K
    Biochemistry; 1975 Jan; 14(2):224-30. PubMed ID: 235271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on the reaction mechanism of a ribonuclease II from Aspergillus oryzae (author's transl)].
    Kaiser PM; Bonacker L; Witzel H; Holý A
    Hoppe Seylers Z Physiol Chem; 1975 Feb; 356(2):143-55. PubMed ID: 240766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase).
    Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y
    Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin.
    Griko YV; Remeta DP
    Protein Sci; 1999 Mar; 8(3):554-61. PubMed ID: 10091658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease.
    Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP
    J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.