These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 238567)
1. The magnitude of electrostatic interactions in inhibitor binding and during catalysis by ribonuclease A. Flogel M; Albert A; Biltonen R Biochemistry; 1975 Jun; 14(12):2616-21. PubMed ID: 238567 [TBL] [Abstract][Full Text] [Related]
2. The pH dependence of the thermodynamics of the interaction of 3'-cytidine monophosphate with ribonuclease A. Flogel M; Biltonen RL Biochemistry; 1975 Jun; 14(12):2610-5. PubMed ID: 238566 [TBL] [Abstract][Full Text] [Related]
3. Calorimetric and potentiometric characterization of the ionization behavior of ribonuclease A and its complex with 3'-cytosine monophosphate. Flogel M; Biltonen RL Biochemistry; 1975 Jun; 14(12):2603-9. PubMed ID: 238565 [TBL] [Abstract][Full Text] [Related]
4. Calorimetric studies of protein--inhibitor interaction. I. Binding of 3'-cytidine monophosphate to ribonuclease A at pH 5.5. Bolen DW; Flögel M; Biltonen R Biochemistry; 1971 Oct; 10(22):4136-40. PubMed ID: 5161033 [No Abstract] [Full Text] [Related]
5. Energetics of ribonuclease A catalysis. 3. Temperature dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate. Eftink MR; Biltonen RL Biochemistry; 1983 Oct; 22(22):5140-50. PubMed ID: 6317015 [TBL] [Abstract][Full Text] [Related]
6. Energetics of ribonuclease A catalysis. 1. pH, ionic strength, and solvent isotope dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate. Eftink MR; Biltonen RL Biochemistry; 1983 Oct; 22(22):5123-34. PubMed ID: 6317013 [TBL] [Abstract][Full Text] [Related]
7. Experimental assignment of the structure of the transition state for the association of barnase and barstar. Frisch C; Fersht AR; Schreiber G J Mol Biol; 2001 Apr; 308(1):69-77. PubMed ID: 11302708 [TBL] [Abstract][Full Text] [Related]
8. Investigation of ribonuclease-catalysed kinetics by a micro-calorimetric method. Tribout M; Paredes S; Léonis J Biochem J; 1976 Jan; 153(1):89-91. PubMed ID: 1259718 [TBL] [Abstract][Full Text] [Related]
9. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase. Hicks SN; Smiley RD; Hamilton JB; Howell EE Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480 [TBL] [Abstract][Full Text] [Related]
10. The nature of the allosteric interactions of ribonuclease and its ligands. Walker EJ; Ralston GB; Darvey IG Biochem J; 1978 Jul; 173(1):1-4. PubMed ID: 28730 [TBL] [Abstract][Full Text] [Related]
11. The thermodynamics of nucleotide binding to proteins. Beaudette NV; Langerman N CRC Crit Rev Biochem; 1980; 9(2):145-70. PubMed ID: 6108194 [TBL] [Abstract][Full Text] [Related]
12. A calorimetric approach to the study of the interactions of cytidine-3'-phosphate with bovine seminal ribonuclease. Ambrosino R; Barone G; Castronuovo G; Cultrera O; Di Donato A; Elia V Biopolymers; 1989 Aug; 28(8):1403-11. PubMed ID: 2752098 [TBL] [Abstract][Full Text] [Related]
13. The effects of pH and ionic strength on cytochrome c oxidase steady-state kinetics reveal a catalytic and a non-catalytic interaction domain for cytochrome c. Sinjorgo KM; Steinebach OM; Dekker HL; Muijsers AO Biochim Biophys Acta; 1986 Jun; 850(1):108-15. PubMed ID: 3011088 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes. Peterson KL; Peterson KM; Srivastava DK Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839 [TBL] [Abstract][Full Text] [Related]
15. Shift in nucleotide conformational equilibrium contributes to increased rate of catalysis of GpAp versus GpA in barnase. Giraldo J; De Maria L; Wodak SJ Proteins; 2004 Aug; 56(2):261-76. PubMed ID: 15211510 [TBL] [Abstract][Full Text] [Related]
16. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli: binding of cytosine 5'-triphosphate and adenosine 5'-triphosphate. Allewell NM; Friedland J; Niekamp K Biochemistry; 1975 Jan; 14(2):224-30. PubMed ID: 235271 [TBL] [Abstract][Full Text] [Related]
17. [Studies on the reaction mechanism of a ribonuclease II from Aspergillus oryzae (author's transl)]. Kaiser PM; Bonacker L; Witzel H; Holý A Hoppe Seylers Z Physiol Chem; 1975 Feb; 356(2):143-55. PubMed ID: 240766 [TBL] [Abstract][Full Text] [Related]
18. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase). Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784 [TBL] [Abstract][Full Text] [Related]
19. Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin. Griko YV; Remeta DP Protein Sci; 1999 Mar; 8(3):554-61. PubMed ID: 10091658 [TBL] [Abstract][Full Text] [Related]
20. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease. Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]