BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23856902)

  • 1. The proteomics and interactomics of human erythrocytes.
    Goodman SR; Daescu O; Kakhniashvili DG; Zivanic M
    Exp Biol Med (Maywood); 2013 May; 238(5):509-18. PubMed ID: 23856902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human red blood cell proteome and interactome.
    Goodman SR; Kurdia A; Ammann L; Kakhniashvili D; Daescu O
    Exp Biol Med (Maywood); 2007 Dec; 232(11):1391-408. PubMed ID: 18040063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte ATP, a possible therapeutic approach for sickle cell disease.
    Hoffman JF
    Am J Hematol; 2019 May; 94(5):E117. PubMed ID: 30681180
    [No Abstract]   [Full Text] [Related]  

  • 4. Erythrocyte membrane sulfatide plays a crucial role in the adhesion of sickle erythrocytes to endothelium.
    Zhou Z; Thiagarajan P; Udden M; Lòpez JA; Guchhait P
    Thromb Haemost; 2011 Jun; 105(6):1046-52. PubMed ID: 21437360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Should we still be focused on red cell hemoglobin F as the principal explanation for the salutary effect of hydroxyurea in sickle cell disease?
    Segel GB; Simon W; Lichtman MA
    Pediatr Blood Cancer; 2011 Jul; 57(1):8-9. PubMed ID: 21480473
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel non-invasive method to measure splenic filtration function in humans.
    El Hoss S; Dussiot M; Renaud O; Brousse V; El Nemer W
    Haematologica; 2018 Oct; 103(10):e436-e439. PubMed ID: 29880604
    [No Abstract]   [Full Text] [Related]  

  • 7. Interactomics: toward protein function and regulation.
    Feng S; Zhou L; Huang C; Xie K; Nice EC
    Expert Rev Proteomics; 2015 Feb; 12(1):37-60. PubMed ID: 25578092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal permeability pathways in human red blood cells.
    Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS
    Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell adhesion under flow.
    Ley K
    Microcirculation; 2009 Jan; 16(1):1-2. PubMed ID: 19191171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singer K, Fisher B. Studies on abnormal hemoglobins, VI: electrophoretic demonstration of type S (sickle cell) hemoglobin in erythrocytes incapable of showing the sickle cell phenomenon. Blood. 1953;8(3):270-275.
    Blood; 2016 Feb; 127(7):791. PubMed ID: 26893392
    [No Abstract]   [Full Text] [Related]  

  • 11. Non-uniformity of intracellular polymer formation in sickle erythrocytes: possible correlation with severity of hemolytic anemia.
    Noguchi CT; Schechter AN
    Am J Pediatr Hematol Oncol; 1984; 6(1):46-50. PubMed ID: 6711762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell membrane injury in sickle cell anaemia.
    Palek J
    Br J Haematol; 1977 Jan; 35(1):1-9. PubMed ID: 322695
    [No Abstract]   [Full Text] [Related]  

  • 13. 2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: altered proteostasis and oxidative stress.
    Basu A; Saha S; Karmakar S; Chakravarty S; Banerjee D; Dash BP; Chakrabarti A
    Proteomics; 2013 Nov; 13(21):3233-42. PubMed ID: 24030922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster analysis for the impact of sickle cell disease on the human erythrocyte protein interactome.
    Ammann LP; Goodman SR
    Exp Biol Med (Maywood); 2009 Jun; 234(6):703-11. PubMed ID: 19359656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydroxyurea on F-cells in sickle cell disease and potential impact of a second fetal globin inducer.
    Dai Y; Sangerman J; Nouraie M; Faller AD; Oneal P; Rock A; Owoyemi O; Niu X; Nekhai S; Maharaj D; Cui S; Taylor R; Steinberg M; Perrine S
    Am J Hematol; 2017 Jan; 92(1):E10-E11. PubMed ID: 27766663
    [No Abstract]   [Full Text] [Related]  

  • 16. A label-free proteome analysis strategy for identifying quantitative changes in erythrocyte membranes induced by red cell disorders.
    Pesciotta EN; Sriswasdi S; Tang HY; Mason PJ; Bessler M; Speicher DW
    J Proteomics; 2012 Dec; 76 Spec No.(0 0):194-202. PubMed ID: 22954596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sickle red cell dehydration: mechanisms and interventions.
    Bookchin RM; Lew VL
    Curr Opin Hematol; 2002 Mar; 9(2):107-10. PubMed ID: 11844992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomic and molecular insights into sickle cell disease and innovative therapies.
    Adebiyi MG; Manalo JM; Xia Y
    Blood Adv; 2019 Apr; 3(8):1347-1355. PubMed ID: 31015210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell proteomics.
    Pasini EM; Mann M; Thomas AW
    Transfus Clin Biol; 2010 Sep; 17(3):151-64. PubMed ID: 20655788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can new optical techniques for in vivo imaging and flow cytometry of the microcirculation benefit sickle cell disease research?
    Morgan SP
    Cytometry A; 2011 Oct; 79(10):766-74. PubMed ID: 21744494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.