These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23857)
1. Alkaline isomerization of thermoresistant cytochrome c-552 and horse heart cytochrome c studied by absorption and resonance Raman spectroscopy. Kihara H; Hon-Nami K; Kitagawa T Biochim Biophys Acta; 1978 Feb; 532(2):337-46. PubMed ID: 23857 [TBL] [Abstract][Full Text] [Related]
2. Proton nuclear-magnetic-resonance and resonance Raman studies of thermophilic cytochrome c-552 from Thermus thermophilus HB8. Hon-Nami K; Kihara H; Kitagawa T; Miyazawa T; Oshima T Eur J Biochem; 1980 Sep; 110(1):217-23. PubMed ID: 6254761 [TBL] [Abstract][Full Text] [Related]
3. Alkaline isomerization of ferricytochrome c: identification of the lysine ligand. Wilgus H; Stellwagen E Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2892-4. PubMed ID: 4368392 [TBL] [Abstract][Full Text] [Related]
4. A transient spin-state change during alkaline isomerization of ferricytochrome c. Saigo S J Biochem; 1981 Jun; 89(6):1977-80. PubMed ID: 6270075 [TBL] [Abstract][Full Text] [Related]
5. Involvement of lysines-72 and -79 in the alkaline isomerization of horse heart ferricytochrome c. Smith HT; Millett F Biochemistry; 1980 Mar; 19(6):1117-20. PubMed ID: 6245678 [TBL] [Abstract][Full Text] [Related]
6. Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method. Hasumi H Biochim Biophys Acta; 1980 Dec; 626(2):265-76. PubMed ID: 6260152 [TBL] [Abstract][Full Text] [Related]
7. Kinetic studies on redox reactions of hemoproteins. I. Reduction of thermoresistant cytochrome c-552 and horse heart cytochrome c by ferrocyanide. Kihara H; Nakatani H; Hiromi K; Hon-Nami K Biochim Biophys Acta; 1977 Jun; 460(3):480-9. PubMed ID: 195599 [TBL] [Abstract][Full Text] [Related]
8. Identification of the ligand-exchange process in the alkaline transition of horse heart cytochrome c. Gadsby PM; Peterson J; Foote N; Greenwood C; Thomson AJ Biochem J; 1987 Aug; 246(1):43-54. PubMed ID: 2823795 [TBL] [Abstract][Full Text] [Related]
9. Kinetic studies on redox reactions of hemoproteins. II. Reduction of thermoresistant cytochrome c-552 and horse heart cytochrome c by ascorbic acid. Kihara H; Nakatani H; Hiromi K; Hon-Nami K; Oshima T J Biochem; 1978 Jan; 83(1):243-8. PubMed ID: 24047 [TBL] [Abstract][Full Text] [Related]
10. NMR study of the alkaline isomerization of ferricytochrome c. Hong XL; Dixon DW FEBS Lett; 1989 Mar; 246(1-2):105-8. PubMed ID: 2540029 [TBL] [Abstract][Full Text] [Related]
11. Effect of pH on axial ligand coordination of cytochrome c" from Methylophilus methylotrophus and horse heart cytochrome c. Indiani C; de Sanctis G; Neri F; Santos H; Smulevich G; Coletta M Biochemistry; 2000 Jul; 39(28):8234-42. PubMed ID: 10889031 [TBL] [Abstract][Full Text] [Related]
12. Alkaline isomerization of oxidized cytochrome c. Equilibrium and kinetic measurements. Davis LA; Schejter A; Hess GP J Biol Chem; 1974 Apr; 249(8):2624-32. PubMed ID: 4362690 [No Abstract] [Full Text] [Related]
13. Alkaline isomerization of horse and yeast cytochromes C. Spectrophotometric and circular dichroism studies. Looze Y; Polastro E; Deconinck M; Leonis J Int J Pept Protein Res; 1978 Nov; 12(5):233-6. PubMed ID: 217844 [TBL] [Abstract][Full Text] [Related]
14. Axial ligand replacement in horse heart cytochrome c by semisynthesis. Raphael AL; Gray HB Proteins; 1989; 6(3):338-40. PubMed ID: 2560194 [TBL] [Abstract][Full Text] [Related]
15. FTIR-monitored thermal titration reveals different mechanisms for the alkaline isomerization of tuna compared to horse and bovine cytochromes c. Filosa A; Ismail AA; English AM J Biol Inorg Chem; 1999 Dec; 4(6):717-26. PubMed ID: 10631603 [TBL] [Abstract][Full Text] [Related]
16. Resonance Raman scattering from hemoproteins. Effects of ligands upon the Raman spectra of various C-type cytochromes. Kitagawa T; Kyogoku Y; Iizuka T; Ikeda-Saito M; Yamanaka T J Biochem; 1975 Oct; 78(4):719-28. PubMed ID: 2584 [TBL] [Abstract][Full Text] [Related]
17. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy. Hagarman A; Duitch L; Schweitzer-Stenner R Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics of the alkaline transition of cytochrome c. Battistuzzi G; Borsari M; Loschi L; Martinelli A; Sola M Biochemistry; 1999 Jun; 38(25):7900-7. PubMed ID: 10387031 [TBL] [Abstract][Full Text] [Related]
19. Ligand exchange during cytochrome c folding. Yeh SR; Takahashi S; Fan B; Rousseau DL Nat Struct Biol; 1997 Jan; 4(1):51-6. PubMed ID: 8989324 [TBL] [Abstract][Full Text] [Related]
20. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c. Ikeda-Saito M; Iizuka T Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]