BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 23857181)

  • 1. Cell mates: paracrine and stromal targets for prostate cancer therapy.
    Sluka P; Davis ID
    Nat Rev Urol; 2013 Aug; 10(8):441-51. PubMed ID: 23857181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stroma-epithelium crosstalk in prostate cancer.
    Niu YN; Xia SJ
    Asian J Androl; 2009 Jan; 11(1):28-35. PubMed ID: 19098934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity.
    Placencio VR; Sharif-Afshar AR; Li X; Huang H; Uwamariya C; Neilson EG; Shen MM; Matusik RJ; Hayward SW; Bhowmick NA
    Cancer Res; 2008 Jun; 68(12):4709-18. PubMed ID: 18559517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stroma targeted therapy enhances castration effects in a transplantable rat prostate cancer model.
    Johansson A; Jones J; Pietras K; Kilter S; Skytt A; Rudolfsson SH; Bergh A
    Prostate; 2007 Nov; 67(15):1664-76. PubMed ID: 17854058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting.
    Pietras K; Pahler J; Bergers G; Hanahan D
    PLoS Med; 2008 Jan; 5(1):e19. PubMed ID: 18232728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts.
    Kaminski A; Hahne JC; Haddouti el-M; Florin A; Wellmann A; Wernert N
    Int J Mol Med; 2006 Nov; 18(5):941-50. PubMed ID: 17016625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active sonic hedgehog signaling between androgen independent human prostate cancer cells and normal/benign but not cancer-associated prostate stromal cells.
    Shigemura K; Huang WC; Li X; Zhau HE; Zhu G; Gotoh A; Fujisawa M; Xie J; Marshall FF; Chung LW
    Prostate; 2011 Dec; 71(16):1711-22. PubMed ID: 21520153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paradoxical Role of Glypican-1 in Prostate Cancer Cell and Tumor Growth.
    Quach ND; Kaur SP; Eggert MW; Ingram L; Ghosh D; Sheth S; Nagy T; Dawson MR; Arnold RD; Cummings BS
    Sci Rep; 2019 Aug; 9(1):11478. PubMed ID: 31391540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel targets in prostate cancer.
    Berthold DR; Moore MJ
    Expert Opin Ther Targets; 2006 Oct; 10(5):777-80. PubMed ID: 16981834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome.
    Leach DA; Need EF; Toivanen R; Trotta AP; Palethorpe HM; Tamblyn DJ; Kopsaftis T; England GM; Smith E; Drew PA; Pinnock CB; Lee P; Holst J; Risbridger GP; Chopra S; DeFranco DB; Taylor RA; Buchanan G
    Oncotarget; 2015 Jun; 6(18):16135-50. PubMed ID: 25965833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAK-441, a novel investigational smoothened antagonist, delays castration-resistant progression in prostate cancer by disrupting paracrine hedgehog signaling.
    Ibuki N; Ghaffari M; Pandey M; Iu I; Fazli L; Kashiwagi M; Tojo H; Nakanishi O; Gleave ME; Cox ME
    Int J Cancer; 2013 Oct; 133(8):1955-66. PubMed ID: 23564295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells.
    Hsieh CL; Gardner TA; Miao L; Balian G; Chung LW
    Cancer Gene Ther; 2004 Feb; 11(2):148-55. PubMed ID: 14695756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stromal cell interplay in prostate development, physiology, and pathological conditions.
    Sanches BDA; Maldarine JS; Vilamaior PSL; Felisbino SL; Carvalho HF; Taboga SR
    Prostate; 2021 Sep; 81(13):926-937. PubMed ID: 34254335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology.
    Nuhn P; De Bono JS; Fizazi K; Freedland SJ; Grilli M; Kantoff PW; Sonpavde G; Sternberg CN; Yegnasubramanian S; Antonarakis ES
    Eur Urol; 2019 Jan; 75(1):88-99. PubMed ID: 29673712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroid receptors in prostate cancer tissues and cells: pathophysiology, problems in methodology, clinical value and controversial questions.
    Pavone-Macaluso M; Carruba G; Castagnetta L
    Arch Esp Urol; 1994 Mar; 47(2):189-201. PubMed ID: 8002681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preprostatectomy: A clinical model to study stromal-epithelial interactions.
    Lopaczynski W; Hruszkewycz AM; Lieberman R
    Urology; 2001 Apr; 57(4 Suppl 1):194-9. PubMed ID: 11295626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the stromal microenvironment in carcinogenesis of the prostate.
    Cunha GR; Hayward SW; Wang YZ; Ricke WA
    Int J Cancer; 2003 Oct; 107(1):1-10. PubMed ID: 12925950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel therapies for metastatic castrate-resistant prostate cancer.
    Dayyani F; Gallick GE; Logothetis CJ; Corn PG
    J Natl Cancer Inst; 2011 Nov; 103(22):1665-75. PubMed ID: 21917607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene targeting to the stroma of the prostate and bone.
    Jackson RS; Franco OE; Bhowmick NA
    Differentiation; 2008 Jul; 76(6):606-23. PubMed ID: 18494814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.