These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 238584)

  • 1. Intermolecular complexes between N-methyl-1,4-dihydronicotinamide and flavines. The influence of steric and electronic factors on complex formation and the rate of flavine-dependent dihydronicotinamide dehydrogenation.
    Blankenhorn G
    Biochemistry; 1975 Jul; 14(14):3172-6. PubMed ID: 238584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin-nicotinamide biscoenzymes: models for the interaction between NADH (NADPH) and flavin in flavoenzymes. Reaction rates and physicochemical properties of intermediate species.
    Blankenhorn G
    Eur J Biochem; 1975 Jan; 50(2):351-6. PubMed ID: 236183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerning 1e- transfer in reduction by dihydronicotinamide: reaction of oxidized flavin and flavin radical with N-benzyl-1,5-dihydronicotinamide.
    Powell MF; Wong WH; Bruice TC
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4604-8. PubMed ID: 6214784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: thermodynamics, kinetics, and mechanism.
    Blankenhorn G
    Eur J Biochem; 1976 Aug; 67(1):67-80. PubMed ID: 134889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function correlations of the reaction of reduced nicotinamide analogues with p-hydroxybenzoate hydroxylase substituted with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Gatti D; Ballou DP; Massey V
    Biochemistry; 1999 Dec; 38(50):16636-47. PubMed ID: 10600126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of flavine oxidation--reduction. I. Dismutation in nonaqueous solvent.
    Favaudon V; Lhoste JM
    Biochemistry; 1975 Oct; 14(21):4731-8. PubMed ID: 241387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the triplet state of flavine and flavoproteins by optical detection of magnetic resonance.
    Moore TA; Kwiram AL
    Biochemistry; 1974 Dec; 13(26):5403-7. PubMed ID: 4433526
    [No Abstract]   [Full Text] [Related]  

  • 8. [Oxidation of NADH by singlet oxygen generated by triplet flavin].
    Vekshin NL; Mironov GP
    Biofizika; 1981; 26(6):953-9. PubMed ID: 7317503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of phenols with old yellow enzyme. Physical evidence for charge-transfer complexes.
    Abramovitz AS; Massey V
    J Biol Chem; 1976 Sep; 251(17):5327-36. PubMed ID: 8461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence energy transfer between the thiamine diphosphate and flavine adenine dinucleotide binding sites on the pyruvate dehydrogenase multienzyme complex.
    Moe OA; Lerner DA; Hammes GG
    Biochemistry; 1974 Jun; 13(12):2552-7. PubMed ID: 4364834
    [No Abstract]   [Full Text] [Related]  

  • 11. The chemistry of flavines and flavorproteins. Photoreduction of flavines by amino acids.
    Penzer GR; Radda GK
    Biochem J; 1968 Sep; 109(2):259-68. PubMed ID: 4300510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The present status of flavin and flavocoenzyme chemistry.
    Hemmerich P
    Fortschr Chem Org Naturst; 1976; 33():451-527. PubMed ID: 11156
    [No Abstract]   [Full Text] [Related]  

  • 13. Glyoxylate carboligase of Pseudomonas oxalaticus. A possible structural role for flavine-adenine dinucleotide.
    Chung ST; Tan RT; Suzuki I
    Biochemistry; 1971 Mar; 10(7):1205-9. PubMed ID: 5553325
    [No Abstract]   [Full Text] [Related]  

  • 14. Importance of C4a- and N5-covalent adducts in the flavin oxidation of carbanions.
    Chan TW; Bruice TC
    Biochemistry; 1978 Oct; 17(22):4784-93. PubMed ID: 728387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of lumiflavin reduction by N-methyl-1,4-dihydronicotinamide: direct evidence for a preequilibrium complex between oxidized lumiflavin and N-methyl-1,4-dihydronicotinamide.
    Porter DJ; Blankenhorn G; Ingraham LL
    Biochem Biophys Res Commun; 1973 May; 52(2):447-52. PubMed ID: 4711162
    [No Abstract]   [Full Text] [Related]  

  • 16. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and equilibria in partially reduced flavine solutions.
    Barman BG; Tollin G
    Biochemistry; 1972 Dec; 11(25):4760-5. PubMed ID: 4347701
    [No Abstract]   [Full Text] [Related]  

  • 18. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavine-protein interactions in flavoenzymes. Temperature-jump and stopped-flow studies of flavine analog binding to the apoprotein of Azotobacter flavodoxin.
    Barman BG; Tollin G
    Biochemistry; 1972 Dec; 11(25):4746-54. PubMed ID: 4655252
    [No Abstract]   [Full Text] [Related]  

  • 20. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.