These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23858710)

  • 1. [Genes for cellulose-degradation and their expression conditions in Chaetomium globosum NK102].
    Hu Y; Bi J; Hao X; Chen H; Pan J; Zhu X
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):354-62. PubMed ID: 23858710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Gα-cAMP/PKA signaling pathway in cellulose utilization of Chaetomium globosum.
    Hu Y; Liu Y; Hao X; Wang D; Akhberdi O; Xiang B; Zhu X
    Microb Cell Fact; 2018 Oct; 17(1):160. PubMed ID: 30309363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon source and pH-dependent transcriptional regulation of cellulase genes of Humicola grisea var. thermoidea grown on sugarcane bagasse.
    Mello-de-Sousa TM; Silva-Pereira I; Poças-Fonseca MJ
    Enzyme Microb Technol; 2011 Jan; 48(1):19-26. PubMed ID: 22112766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering yeast for efficient cellulose degradation.
    Van Rensburg P; Van Zyl WH; Pretorius IS
    Yeast; 1998 Jan; 14(1):67-76. PubMed ID: 9483796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential transcription of beta-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium.
    Yoshida M; Igarashi K; Kawai R; Aida K; Samejima M
    FEMS Microbiol Lett; 2004 Jun; 235(1):177-82. PubMed ID: 15158279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus.
    Kunitake E; Tani S; Sumitani J; Kawaguchi T
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2017-28. PubMed ID: 22851016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis.
    Kim IJ; Nam KH; Yun EJ; Kim S; Youn HJ; Lee HJ; Choi IG; Kim KH
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8537-47. PubMed ID: 25936375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Two optimized transformation protocols for a cellulose-utilizing fungus Chaetomium globosum NK-102].
    Hao X; Ji Y; Chen H; Bi J; Pan J; Zhu X
    Wei Sheng Wu Xue Bao; 2011 Nov; 51(11):1494-501. PubMed ID: 22260047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpressing transcriptional regulator in Chaetomium globosum activates a silent biosynthetic pathway: evaluation of shanorellin biosynthesis.
    Tsunematsu Y; Ichinoseki S; Nakazawa T; Ishikawa N; Noguchi H; Hotta K; Watanabe K
    J Antibiot (Tokyo); 2012 Jul; 65(7):377-80. PubMed ID: 22569160
    [No Abstract]   [Full Text] [Related]  

  • 10. Transcriptional control of the cellulase genes in Trichoderma reesei.
    el-Dorry H; Crivellaro O; Leite A; Abrahäo-Neto J; Henrique-Silva F; Escobar-Vera J; Matheucci Júnior E; Carle-Urioste JC; Pereira GG; Carraro-Pereira DM; el-Gogary S
    Braz J Med Biol Res; 1996 Jul; 29(7):905-9. PubMed ID: 9070379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways during Sexual Development of Chaetomium globosum.
    Wang Z; López-Giráldez F; Wang J; Trail F; Townsend JP
    mBio; 2019 Dec; 10(6):. PubMed ID: 31822585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-dependent differential expression of Humicola grisea var. thermoidea cellobiohydrolase genes.
    Poças-Fonseca MJ; Silva-Pereira I; Rocha BB; Azevedo M de O
    Can J Microbiol; 2000 Aug; 46(8):749-52. PubMed ID: 10941523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources.
    Chen X; Luo Y; Yu H; Sun Y; Wu H; Song S; Hu S; Dong Z
    J Biotechnol; 2014 Mar; 173():59-64. PubMed ID: 24445169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of two endoglucanase-encoding genes (cel3A and cel4) from the wood-degrading basidiomycete Polyporus arcularius.
    Ohnishi Y; Nagase M; Ichiyanagi T; Kitamoto Y; Aimi T
    FEMS Microbiol Lett; 2007 Sep; 274(2):218-25. PubMed ID: 17608693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the degradation of cellulosic substrates by a Chaetomium globosum endophytic isolate.
    Longoni P; Rodolfi M; Pantaleoni L; Doria E; Concia L; Picco AM; Cella R
    Appl Environ Microbiol; 2012 May; 78(10):3693-705. PubMed ID: 22389369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional profiling of cellulase and expansin-related genes in a hypercellulolytic Trichoderma reesei.
    Verbeke J; Coutinho P; Mathis H; Quenot A; Record E; Asther M; Heiss-Blanquet S
    Biotechnol Lett; 2009 Sep; 31(9):1399-405. PubMed ID: 19479322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source.
    Chow CM; Yagüe E; Raguz S; Wood DA; Thurston CF
    Appl Environ Microbiol; 1994 Aug; 60(8):2779-85. PubMed ID: 8085821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellobiose dehydrogenase formation by filamentous fungus Chaetomium sp. INBI 2-26(-).
    Vasil'chenko LG; Khromonygina VV; Karapetyan KN; Vasilenko OV; Rabinovich ML
    J Biotechnol; 2005 Sep; 119(1):44-59. PubMed ID: 15996782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of lignocellulosic material and humus formation by fungi.
    Mishra MM; Singh CP; Kapoor KK; Jain MK
    Ann Microbiol (Paris); 1979; 130 A(4):481-6. PubMed ID: 507620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes.
    Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME
    Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.