BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23859264)

  • 1. Protein concentration and protein-exposed hydrophobicity as dominant parameters determining the flocculation of protein-stabilized oil-in-water emulsions.
    Delahaije RJ; Wierenga PA; van Nieuwenhuijzen NH; Giuseppin ML; Gruppen H
    Langmuir; 2013 Sep; 29(37):11567-74. PubMed ID: 23859264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycation on the flocculation behavior of protein-stabilized oil-in-water emulsions.
    Delahaije RJ; Gruppen H; van Nieuwenhuijzen NH; Giuseppin ML; Wierenga PA
    Langmuir; 2013 Dec; 29(49):15201-8. PubMed ID: 24188433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flocculation of protein-stabilized oil-in-water emulsions.
    Dickinson E
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):130-40. PubMed ID: 20667698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles.
    Horozov TS; Binks BP; Gottschalk-Gaudig T
    Phys Chem Chem Phys; 2007 Dec; 9(48):6398-404. PubMed ID: 18060170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of free protein on flocculation stability of beta-lactoglobulin stabilized oil-in-water emulsions at neutral pH and ambient temperature.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Nov; 20(24):10394-8. PubMed ID: 15544365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved emulsion stability by succinylation of patatin is caused by partial unfolding rather than charge effects.
    Delahaije RJ; Wierenga PA; Giuseppin ML; Gruppen H
    J Colloid Interface Sci; 2014 Sep; 430():69-77. PubMed ID: 24998056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI
    Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of iota-carrageenan on droplet flocculation of beta-lactoglobulin-stabilized oil-in-water emulsions during thermal processing.
    Gu YS; Decker EA; McClements DJ
    Langmuir; 2004 Oct; 20(22):9565-70. PubMed ID: 15491187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of droplet flocculation in hexadecane oil-in-water emulsions stabilized by beta-lactoglobulin at pH 3 and 7.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Jul; 20(14):5753-8. PubMed ID: 16459589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards predicting the stability of protein-stabilized emulsions.
    Delahaije RJ; Gruppen H; Giuseppin ML; Wierenga PA
    Adv Colloid Interface Sci; 2015 May; 219():1-9. PubMed ID: 25704489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.
    Zhai J; Hoffmann SV; Day L; Lee TH; Augustin MA; Aguilar MI; Wooster TJ
    Langmuir; 2012 Feb; 28(5):2357-67. PubMed ID: 22201548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pH and ionic strength on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-alginate interfaces.
    Harnsilawat T; Pongsawatmanit R; McClements DJ
    Biomacromolecules; 2006 Jun; 7(6):2052-8. PubMed ID: 16768433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface protein composition and concentration of whey protein isolate-stabilized oil-in-water emulsions: effect of heat treatment.
    Ye A
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):24-9. PubMed ID: 20211549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH and ionic strength of NaCl on the stability of diacetyl and (-)-α-pinene in oil-in-water emulsions formed with food-grade emulsifiers.
    Bortnowska G
    Food Chem; 2012 Dec; 135(3):2021-8. PubMed ID: 22953953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the stability of O/W emulsion in BSA solution: stabilization by electrically neutral protein at high ionic strength.
    Rangsansarid J; Fukada K
    J Colloid Interface Sci; 2007 Dec; 316(2):779-86. PubMed ID: 17897667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH and ionic strength on the physicochemical properties of coconut milk emulsions.
    Tangsuphoom N; Coupland JN
    J Food Sci; 2008 Aug; 73(6):E274-80. PubMed ID: 19241548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of sucrose on droplet flocculation in hexadecane oil-in-water emulsions stabilized by beta-lactoglobulin.
    Kim HJ; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Jan; 51(3):766-72. PubMed ID: 12537455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.