These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23859464)

  • 1. Anatomical differences in the human inferior colliculus relate to the perceived valence of musical consonance and dissonance.
    Fritz TH; Renders W; Müller K; Schmude P; Leman M; Turner R; Villringer A
    Eur J Neurosci; 2013 Oct; 38(7):3099-105. PubMed ID: 23859464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.
    Fishman YI; Volkov IO; Noh MD; Garell PC; Bakken H; Arezzo JC; Howard MA; Steinschneider M
    J Neurophysiol; 2001 Dec; 86(6):2761-88. PubMed ID: 11731536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "consonance effect" and the hemispheres: a study on a split-brain patient.
    Prete G; Fabri M; Foschi N; Brancucci A; Tommasi L
    Laterality; 2015 May; 20(3):257-69. PubMed ID: 25256169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Losing the music: aging affects the perception and subcortical neural representation of musical harmony.
    Bones O; Plack CJ
    J Neurosci; 2015 Mar; 35(9):4071-80. PubMed ID: 25740534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissonance encoding in human inferior colliculus covaries with individual differences in dislike of dissonant music.
    Kim SG; Lepsien J; Fritz TH; Mildner T; Mueller K
    Sci Rep; 2017 Jul; 7(1):5726. PubMed ID: 28720776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening.
    Bravo F; Cross I; Hopkins C; Gonzalez N; Docampo J; Bruno C; Stamatakis EA
    Hum Brain Mapp; 2020 Jan; 41(1):46-66. PubMed ID: 31512332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early neural responses underlie advantages for consonance over dissonance.
    Crespo-Bojorque P; Monte-Ordoño J; Toro JM
    Neuropsychologia; 2018 Aug; 117():188-198. PubMed ID: 29885961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired Perception of Sensory Consonance and Dissonance in Cochlear Implant Users.
    Caldwell MT; Jiradejvong P; Limb CJ
    Otol Neurotol; 2016 Mar; 37(3):229-34. PubMed ID: 26825669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indifference to dissonance in native Amazonians reveals cultural variation in music perception.
    McDermott JH; Schultz AF; Undurraga EA; Godoy RA
    Nature; 2016 Jul; 535(7613):547-50. PubMed ID: 27409816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
    Bidelman GM; Heinz MG
    J Acoust Soc Am; 2011 Sep; 130(3):1488-502. PubMed ID: 21895089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The variation of hemodynamics relative to listening to consonance or dissonance during chord progression.
    Daikoku T; Ogura H; Watanabe M
    Neurol Res; 2012 Jul; 34(6):557-63. PubMed ID: 22642826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
    Bidelman GM; Krishnan A
    J Neurosci; 2009 Oct; 29(42):13165-71. PubMed ID: 19846704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial organization of EEG coherence during listening to consonant and dissonant chords.
    Passynkova N; Neubauer H; Scheich H
    Neurosci Lett; 2007 Jan; 412(1):6-11. PubMed ID: 17134828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians.
    Minati L; Rosazza C; D'Incerti L; Pietrocini E; Valentini L; Scaioli V; Loveday C; Bruzzone MG
    Neuroreport; 2009 Jan; 20(1):87-92. PubMed ID: 19033878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The basis of musical consonance as revealed by congenital amusia.
    Cousineau M; McDermott JH; Peretz I
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19858-63. PubMed ID: 23150582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
    González-García N; González MA; Rendón PL
    Brain Res; 2016 Jul; 1643():59-69. PubMed ID: 27134038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the dynamics of the brain response to music: A central role of the ventral striatum/nucleus accumbens.
    Mueller K; Fritz T; Mildner T; Richter M; Schulze K; Lepsien J; Schroeter ML; Möller HE
    Neuroimage; 2015 Aug; 116():68-79. PubMed ID: 25976924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality.
    Andermann M; Patterson RD; Rupp A
    J Neurophysiol; 2020 Apr; 123(4):1320-1331. PubMed ID: 32073930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissonant music engages early visual processing.
    Bravo F; Glogowski J; Stamatakis EA; Herfert K
    Proc Natl Acad Sci U S A; 2024 Jul; 121(30):e2320378121. PubMed ID: 39008675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.